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Abstract. In this paper, we have discussed
the synchronization between coupled Joseph-
son Junctions which experience di�erent chaotic
oscillations. Due to potential high-frequency
applications, the shunted nonlinear resistive-
capacitive-inductance junction (RCLSJ) model
of Josephson junction was considered in this pa-
per. In order to obtain the synchronization, an
adaptive MIMO controller is developed to drive
the states of the slave chaotic junction to fol-
low the states of the master chaotic junction.
The developed controller has two parts: the fuzzy
neural controller and the sliding mode controller.
The fuzzy neural controller employs a fuzzy neu-
ral network to simulate the behavior of the ideal
feedback linearization controller, while the slid-
ing mode controller is used to ensure the robust-
ness of the controlled system and reduce the un-
desired e�ects of the estimate errors. In addi-
tion, the Lyapunov candidate function is also
given for further stability analysis. The numer-
ical simulations are carried out to verify the va-
lidity of the proposed control approach.
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1. Introduction

Since Josephson Junction (JJ) possesses the ad-
vanced characteristics such as ultra-low noise,
low power consumption and high working fre-
quency [1], JJ has received much attention from
many researchers. Then di�erent models have
been introduced to represent JJ [1], [2], [3], [4],
[5]. Among many types of JJ models, two types
of JJ models have attracted more researchers
due to their exact modeling in JJ behaviors.
These models are the shunted linear resistive-
capacitive junction (RCSJ) and the shunted
nonlinear resistive- capacitive-inductance junc-
tion (RCLSJ). The RCSJ model is the second
order system while the RCLSJ model is the third
order system. The RCLSJ model is found to be
more accurate in high frequency applications [3],
[4]. Because the RCLSJ model is the third order
system, this model can exhibit chaos even with
external dc current only. The chaotic behavior
of the RCLSJ model has been extensively stud-
ied by Dana, et al. [5]. Afterward, there have
been some control methods developed to con-
trol or synchronize RCLSJ model of Josephson
Junction such as nonlinear feedback control [6],
backstepping control [7], [8], delay linear feed-
back control [9], time delay feedback control [10]
and sliding mode control [11]; however, some
shortcomings exist. The nonlinear backstepping
method has quite complicated procedure to de-
sign the controller while choosing the time de-
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lay is problematic in delay linear feedback. The
chattering phenomenon is a drawback of the slid-
ing mode method. Moreover, these control tech-
niques almost require the exact mathematical
models to design the controllers. This require-
ment becomes the signi�cant limitation in design
a nonlinear controller when the system param-
eters are unknown or the system is e�ected by
uncertainties.

Nowadays, fuzzy logic and neural networks are
used as the power tools for modelling and con-
trolling highly uncertain, nonlinear and complex
systems [12], [13], [14], [15], [16]. In this study,
the chaos synchronization of coupled RCLSJ
modes is expected. The synchronization can be
obtained when the slave follows the master as
close as possible. Based on fuzzy neural net-
works, we develop a MIMO controller that can
force the states of slave to track the states of
master with zero convergence of state errors.
In this manner the chaos synchronization is ob-
tained.

The remainder of this paper is organized as
follows. In Section 2, the mathematical model
of RCLSJ is described. The MIMO fuzzy neural
controller design is presented in Section 3 with
the numerical simulations are given in Section 4.
Finally, the conclusion is given Section 5.

2. The RCLSJ Model of

Josephson Junction

In high frequency application, the RCLSJ model
of Josephson Junction is found more accuracy
and appropriate than others [3], [4]. In the di-
mensionless form, the mathematical model of
RCLSJ is given as follows [5]:

z1 = z2,

z2 =
1

βC
[iz − g(z2)z2 − sin (z1 − z3)] ,

z3 =
1

βL
[z2 − z3] ,

(1)

where state variables z1, z2 and z3 represent
the phase di�erence, junction voltage and cur-
rent through shunted inductance, respectively.

βC and βL correspond to capacitive and induc-
tance constants respectively and are considered
as model parameters. iz stands for the exter-
nal current consisting of a dc component only.
The nonlinear damping term g(z2) is approxi-
mated with current voltage relation between the
two junction resistances and is described by the
following step function:

The dynamics of RCLSJ model was exten-
sively studied in [5]. This study demonstrated
that the RCLSJ model can produce chaotic oscil-
lations when the external dc current and the pa-
rameters fall into a certain area. For examples,
the junction in Eq. (1) with zero initial states
exhibits chaos when βC = 0.707, βL = 2.6,
iz = 1.2 and as shown in Fig. 1.

Fig. 1: Chaotic motion in Josephson Junction.

Remark 1. The dynamics of JJ much depends
on their circuit parameters, including βL and
βC , and the external DC current iz. The JJ
shows the chaotic behaviors when these param-
eters fall into the chaotic region. This chaotic
region can be referred in Figs. 9-10 of [4].
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3. Synchronization of the

Coupled RCLSJ Models

3.1. Problem statement and

preliminaries

Consider the RCLSJ chaotic system de�ned in
Eq. (1) as the master system with which the
slave system need to be synchronized.

Consider the second RCLSJ chaotic system
that contains the di�erent values of initial con-
ditions and external current as follows:

x1 = x2 + u1,

x2 =
1

βC
[ix − g(x2)x2 − sin(x1)− x3] + u2,

x3 =
1

βL
[x2 − x3] + u3,

(2)

where u1,u2 and u3 are control signals. Here,
the aim of these control signals is to force the
state variables of the slave system described by
Eq. (2) to follow the state variables of the mas-
ter system given by Eq. (1) as close as possi-
ble. Thus, one-way synchronization of the two
RCLSJ chaotic systems will be achieved. Since
all state variables of the slave system are consid-
ered as outputs, the slave system with control
inputs can be rewritten in the MIMO form as:

{
x = f(x) + g(x)u

y = h(x)
(3)

where

Due to the relative degree of the system given
by Eq. (3) r1 = r2 = r3 = 1 , the outputs of the
slave system can be rewritten as:

y = f(x) + g(x)u. (4)

Now, we de�ne the errors between the depen-
dent variables of master and slave as:

e = y − yd. (5)

where e = [e1 e2 e3]
T and yd = [z1 z2 z3]

T .

Then, in order to meet the control objective,
we use the input-output linearization technique
and the nonlinear feedback controller can be ob-
tained as [17]:

u∗ = g−1(x)[−f(x) + v(t)]. (6)

where v(t) is the new input variable and it is
given as:

v(t) = yd − ke. (7)

where k = diag(k1, k2, k3) is positive de�ned
matrix.

Substituting Eq. (6) into Eq. (4), we can get:

y = v(t). (8)

Substituting Eq. (7) into Eq. (8), and using
Eq. (5) implies that:

e+ ke = 0. (9)

The equation in Eq. (9) implies that ej with
j = 1, 2, 3 converges to zero exponentially. How-
ever, the ideal nonlinear controller in Eq. (6) can
no longer be used when f(x) and g(x) in Eq. (3)
change their values and become unknown due to
parameter perturbation and noise disturbance.
In order to bypass this control problem, a fuzzy
neural network was used to directly approximate
the values of control signals.
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3.2. Designed fuzzy neural

network

Since fuzzy logic and neural networks have ex-
hibited the superior abilities in modeling and
controlling the highly uncertain, ill-de�ned and
complex systems, we employ a fuzzy neural net-
work which combines the advantageous merits of
a fuzzy logic system and a neural network to ap-
proximate the nonlinear control laws u1, u2 and
u3. The structure of the fuzzy neural network is
depicted in Fig. 2.

Fig. 2: Structure of the designed fuzzy neural network.

This network structure has four layers: input
layer, membership layer, rule layer and output
layer. Nodes in the input layer are 3 state vari-
ables of the slave chaotic JJ and their values are
directly transmitted to the membership layer.
When 9 fuzzy rules were used for network de-
sign, the membership layer has 3×9 nodes. Each
node performs a membership function and em-
ploys a Gaussian function to calculate its value.
The rule layer has 9 nodes and each node cor-
responds to an element ψ(x) of the fuzzy basis
vector ψ(x) and performs a fuzzy rule. Thus, in
the rule layer, all nodes denote the fuzzy rule set.
The output layer is connected to the rule layer
through weighting factors, θij with i = 1 9, j = 1
3. The weighting factors θij are elements of the
weighting vector θ(t). These factors are the pa-
rameters of the networks and they will be tuned
by designed adaptive laws given in Eq. (11). In

the output layer, 3 nodes act for the values of
control signals u1, u2 and u3 at time t.

3.3. Adaptive fuzzy controller

design

When f(x) and g(x) are unknown, the ideal con-
trol law in Eq. (6) cannot be determined, and
therefore this control law cannot be used. To
solve this problem, we developed a fuzzy neu-
ral network to directly approximate the nonlin-
ear control law. In order to ensure our design
proper, we need the following assumptions.

Assumption 1. The scalar matrix g(x) is
positive de�ned, then it exists some positive con-
stants g, g ∈ R such that gI ≤ g(x) ≤ gI.

Assumption 2. The rate of variation of g(x)
is bounded, that is, there exists a constant D ∈
R such that | g(x) |≤ DI.

Let the fuzzy neural controller uf be the
approximation of the ideal controller given in
Eq. (6). uf is online estimated by a fuzzy neural
network as follows:

uf = θT(t)ψ(x), (10)

where

θ11 . . . θ13
...

...
θ91 . . . θ93

 is weighting matrix of

which each entry is represented by a link be-
tween Rule layer and Output layer in the chosen
fuzzy neural network. ψ(x) = [ψ1 ψ1]

T is fuzzy
basic vector of which each element ψi with i = 1
9 is de�ned as:

ϕi(x) =

3∏
j=1

µAi
j
(x)

9∑
i=1

 3∏
j=1

µAi
j
(x)

 ,

where the membership functions µAi
j
(x) 's em-

ploy Gaussian function to calculate their values.

The adaptive law which allows the weighting
matrix θ(t) to vary so that the fuzzy neural con-
troller uf reaches the ideal controller u

∗ is cho-
sen as:
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θ̇ij = −wijψiej with i = 1 9, j = 1 3, (11)

where wijs are positive factors which govern the
rate of adaption.

Since the designed fuzzy neural network has
the �nite number of units in the hidden layer,
the approximation errors are unavoidable. We
assume that, these approximation errors are
bounded by a known vector δ = [δ1 δ2 δ3].
Then a sliding mode controller us is added to
reduce the undesirable e�ects of the approxima-
tion errors. The formula of us is given as:

us = −diag(sgn(e))(δ +
D

2g2
| e |), (12)

where | . | denotes the absolute value.

From Eq. (10) and Eq. (12), the total con-
troller is achieved as:

u = uf + us

= θT (t)ψ(x)− diag(sgn(e))(δ + D

2g2
|e|).

(13)

Therefore, the coupled RCLSJ models can be
synchronized with the control law in Eq. (13)
and the adaptive mechanism in Eq. (11).

Moreover, for stability analysis, the Lyapunov
approach can be used. First, the Lyapunov can-
didate function can be considered as follows:

V =
1

2
eTg−1e+

1

2

9∑
i=1

3∑
j=1

1

wij
θ̃Tijθij ,

where θ̃ij is a parameter error between the cur-
rent paramter θij and optimal papameter θ∗ij .
Notice that the optimal papameter θ∗ij is an ar-
ti�cial constant quantity introduced only for an-
alytical purpose and it is not needed for im-
plemantation. Taking some algebraic manip-
ulations and incorporating the control law in
Eq. (13) and the adaptive law in Eq. (11), one
can get the time derivative which is less than
zero as:

V = −e
T ke

g
≤ 0. (14)

Since the chosen Lyapunov candidate function
is positive and its time derivative is less than
zero, the controlled system is stable.

4. Numerical Simulations

In this section, the numerical results are given to
verify the proposed method. In order to demon-
strate the procedure, we keep the zero initial
conditions and the external current iz = 1.2
for the master system. Then we choose the
di�erent values for the slave system, that is
[x1 [x2 [x3]

T = [1 1 1]T and ix = 1.135.
The model parameters βL = 2.6 and βC = 0.707
are chosen and �xed for both master and slave.
Because of the di�erent values of external dc cur-
rents and initial conditions, the master and slave
produce chaotic oscillations di�erently.

First, the coupled systems are considered in
the case of without control signals. Due to the
di�erent chaotic motions between master and
slave, the chaotic oscillations are re�ected into
state errors as shown in Fig. 3.

Fig. 3: The state errors between master and slave with-

out control e�ects.

Second, the coupled systems are controlled
by the MIMO fuzzy neural controller. In this
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