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Abstract. The paper studies are the search op-
timization task of multi-extremal objects, which
are more complicated than mono-extremal. Pa-
per postulates that to �nd extreme suitable val-
ues on complex test function the heuristic algo-
rithm is one way. Self-Organizing Migrating Al-
gorithm and devised approach applied to this task
are considered. Conducted research established
common test environment to compare multi-
extremal test functions. Speci�c characteristics
for problem solving of detection and identi�ca-
tion of global and local extreme are included. Ad-
ditional clustering mechanism is described. Ob-
tained measurements of Self-Organizing Migrat-
ing Algorithm on a range of multi-extremal test
functions are illustrated.
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1. Introduction

The most advanced problems in science, tech-
nology, economics, military a�airs and other
applied modern trends are connected with the

tasks of �nding optimums in designs, technolo-
gies, models and environments, through the pos-
sibility of controlling the dynamic and static
states, as well as, other requirements put for-
ward in the speci�cations of the design objects.
In other words, the developers have to solve the
problems of Searching Optimization (SO) [1]. It
is very typical that most of the current known
SO methods are developed and e�ectively used
to �nd only one extreme, which is often the
global one.

However, many tasks in solving complex tech-
nological systems and transportation problems
require optimization. Especially, the objects of
discrete nature are characterized by MultiEx-
tremal (ME) properties [2] and [3]. A signi�cant
distinctive property for solving such tasks re-
quires speci�c methods to reach the solution. It
is unlikely that these methods should be sought
in the class of the SO deterministic methods,
though such attempts are already well known.
These methods are too sensitive to the sign
variation of discontinuous functions within their
continuum response factor spaces. For solving
real optimization problems, it has been com-
mon to apply methods called �heuristic�. These
methods are the most perspective to obtain so-
lutions for the ME problems [4] and [5]. The
bright representative this type of methods is
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Self-Organizing Migrating Algorithm (SOMA)
[6], [7] and [8]. SOMA is an algorithm devel-
oped in 1999, whose operation is based, like the
Scatter Search [9] or Particle Swarm Optimiza-
tion (PSO) [10] on vector operations.

The original idea that led to its creation, is
to mimic the behavior of a group of intelli-
gent individuals who cooperate in solving com-
mon problems such as �nding food sources, etc.
Since working with similar populations, such as
Genetic Algorithms (GA) [11] and evolutionary
outcome after one it is identical with genetic al-
gorithm and di�erential evolution, it can be un-
derstood like sort of evolutionary algorithm de-
spite the fact that during its run it is not in
terms of philosophy of creating a new algorithm
descendants, as in other classical evolutionary
algorithms.

To test the e�ectiveness of the developed mod-
i�cations require Test Functions (TFs) with not
only global extremum, but also a variety of
global, local or sub-extreme values. The authors
are chosen next TFs: Rastrigin [12], Rosenbrock
[13], Himmelblau [14], Lambda [15], Schwefel
[16], Giunta [17], Ursem [18], Shubert [19] and
Plateau [20].

These TF have di�erent property. For exam-
ple, Rastrigin TF has only one global extremum.
Himmelblau has 4 equals global extreme, etc.

2. Canonical SOMA MM

SOMA is not based on the philosophy of evo-
lution, but on the behavior of a social group of
individuals, e.g. a herd of animals looking for
food. One can classify SOMA as an evolutionary
algorithm, because the �nal result, after one mi-
gration loop, is equivalent to the result from one
generation derived by the classic evolutionary al-
gorithms - individuals hold new positions on the
N dimensional hyper-plane. When the group of
individuals is created, then the rule mentioned
above governs the behavior of all individuals so
that they demonstrate 'self-organization' behav-
ior. Because no new individuals are created,
and only existing ones are moving over the N-
dimensional hyper-plane. This algorithm was
described in more detail in the [6], [7] and [8]

works. Below is a brief description of the algo-
rithm, for an understanding of its principles.

2.1. SOMA Parameters and

Their Recommended

Values

SOMA parameters divided into two types:
"Controlling" - are used for the quality of re-
sults of optimization process and "Stopping" -
are used to stop the search process when crite-
ria are ful�lled:

• PathLength. This parameter de�nes how
far an individual stops in front of/behind
the Leader,

• Step. This parameter de�nes the fraction
of step individual to the Leader,

• PRT. This parameter determines whether
an individual will go directly to the Leader
or to dimensional subspace, which is per-
pendicular to the original space. This is the
mutation and crossover GA prototypes,

• PopSize. This is individuals number in pop-
ulation,

• Migrations. This is the number of max-
imum iteration, the implementation of
which will stop the algorithm,

• MinDiv. This parameter de�nes the largest
allowed di�erence between the best and the
worst individual from actual population. If
the di�erence is too small, then the opti-
mizing process is will stop. Recommended
value is 0.1, but parameter is very depen-
dent on target SO problem [6].

The parameters and their recommended do-
mains are shown in Tab. 1.

2.2. SOMA Strategies and

Choice of Target Strategy

for Experiments

Select a population Leader ("attraction" of pop-
ulation or individual in particular) is one of the
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Tab. 1: Recommended domains of SOMA parameters.

Name Recommended domain Type

PathLength [1.1; 3] Controlling
Step [0.11; PathLength] Controlling
PRT [0; 1] Controlling

PopSize [10; +∞) Controlling
Migrations [10; +∞) Stopping
MinDiv (0; +∞) Stopping

key moments in SOMA. The canonical SOMA
version has four basic strategies:

• All to One. All individuals move towards
the Leader, except the Leader,

• All to Random. All in-
dividuals move towards
a randomly selected individual during
the migration loop. This strategy has sub-
strategies, which are change the number of
randomly selected individuals,

• All to All. All individuals move towards the
all other individuals. Each individual try to
�nd the best position between it and other
individuals,

• All to All Adaptive. It is a modi�ed All to
All strategy. Individuals do not begin a new
migration from the same old position, but
from the last best position found during the
last traveling to the previous individual.

As a result of previously conducted research
[6] the most logical strategy is "All to All Adap-
tive", due to the high e�ciency (in spite of the
increasing computing time). Also, the authors
attempt was create new strategies ("All to One
plus Random", "All to Neighbor and All to One
plus Neighbor"), but the results of computa-
tional experiments have shown that the basic
strategies were more e�ective.

2.3. SOMA Principles

The canonical SOMA version [6] consists of the
following steps:

1. Parameter de�nition. Before starting the
algorithm, SOMA's parameters and the
Cost Function (CF) needs to be de�ned,

2. Population initialization. A population of
individuals is randomly generated,

3. Migrating loop. Each individual is evalu-
ated by CF and the Leader is chosen for
the current migration loop. Migration can
be also viewed as a competitive-cooperative
phase. During the competitive phase each
individual tries to �nd the best position on
its way and also the best from all individu-
als. Thus during migration, all individuals
compete among themselves. When all indi-
viduals are in new positions, they release
information as to their cost value. This
can be regarded as a cooperative phase.
All individuals cooperate so that the best
individual (Leader) is chosen. Then all
other individuals begin to jump, towards
the Leader. Each individual is evaluated
after each jump using the CF. The jumping
continues, until a new position de�ned by
the PathLength has been reached,

4. Test for stopping condition. If MinDiv or
Migrations stopping criterion are ful�lled,
go to step 5, otherwise return to step 3,

5. Stop. Recall the best solution(s) found dur-
ing the search.

3. Modi�ed SOMA for

ME SO Tasks

ME SOMA modi�cation based on the canonical
SOMA, but it has additional discrete mechanism
and clustering process.

First problem in ME SO is an allocation of all
global/local/sub-extremum areas. In this work,
authors propose the sampling of search space ap-
proach. That means that all searching space di-
vided into N sub-spaces.

In every sub-space ME SOMA initialize inde-
pendent population (population from one sub-
space do not communicate with other popu-
lations). After ful�lled stopping criterion in
each population SOMA work is stop (popula-
tion in one sub-space do not stop the work
of other populations). Sampling the searching
space process means, that number of maximum
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extremums were allocated equally N . However,
it makes modi�cation as "parallel" and reducing
the computing time, because all SOMA popula-
tions searching the extrema at the same time.

After allocating all extreme in each space
the result values are clustered, to get a
true picture without "nearly-extremum" values.
For this problem authors propose "A Quasi-
Equivalence" clustering algorithm [21] and [22].
Clustering does not require resulting number of
clusters. It can be described by the following
equations:

The matrix of normal similarity measures:

µxq (xi) = 1− d(xq, xi)

max
k∈[1,Q]

(d(xq, xk))
, (1)

where: x is the plurality of elements; Q is a
number of elements in plurality; q, i ∈ 1 . . . Q,
d(x, y) is a clustering criterion (like Euclidean
distance between points, etc.).

The relative similarity measures:

ζxq
(xi, xj) = 1−

∣∣µxq
(xi) = µxq

(xj)
∣∣ , (2)

where j ∈ 1 . . . Q.

The matrix of similarity measures of elements
plurality:

ζ(a, b) = T (ζx1
(a, b), . . . , ζxQ

(a, b)) =

= min
i=1,Q

ζxi
(a, b), (3)

where a, b ∈ x plurality.

The result matrix:

Rqζ = Rq−1ζ ·Rζ , (4)

where Rζ is relation between clustering points.

Values in result R matrix will show whether
the pair of points belongs R relation, their called
"quasi-equivalence levels" (a). The choice of a
particular level divides the plurality into equiva-
lence classes, which correspond to separate clus-
ters. Fig. 1 demonstrates �ow-chart of "A Quasi
Equivalence" clustering algorithm.

ME SOMA modi�cation requires to do "A
Quasi-Equivalence" clustering by 2 di�erent cri-
terion: �rst - by Euclidean distance between

Fig. 1: "A Quasi-Equivalence" clustering �ow-chart.

allocated extrema, to drop-out around the ex-
treme values and second - by CF values, to group
the extrema with the same values.

Using Euclidean distance clustering criterion
allows to groups the SOMA populations around
the same extrema. After the �rst clustering cri-
terion developed mechanism delete all individu-
als, except the Leader (extremum). It allows to
dropout the sub-local values.

4. Check ME SOMA

E�ectivness

To test the e�ectiveness of developed ME SOMA
modi�cation chosen 9 famous TF. An appropri-
ate software tool "ME SOMA" was also devel-
oped. For development C# programming lan-
guage in Microsoft Visual Studio 2015 IDE was
used.

Search purpose for each function are the
minima. For all experiments identical pa-
rameter settings are used: N is depen-
dent on TF, Migration = 10, PopSize =
7, Step = 0.11, PathLength = 3,
PRT = 0.1, MinDiv = 1e−15. Strategy is "All
to All Adaptive". a is dependent on TF

To demonstrate ME SOMA modi�cation re-
sult the �gures for each TF with allocated ex-
treme area clusters are illustrated. As can seen
on Fig. 2(a) global and local extrema were lo-
calized. Although N > (global + local extreme
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Fig. 2. Rastrigin TF. N=15, a=0.95. Fig. 3. Rosenbrock TF. N=4, a=0.999. Fig. 4. Himmelblau TF. N=4, a=0.8. 

Fig. 5. Lambda TF. N=3, a=0.95. Fig. 6. Schwefel TF. N=5, a=0.85. Fig. 7. Giunta TF. N=4, a=0.85. 

Fig. 8. Ursem TF. N=4, a=0.85. Fig. 9. Shubert TF. N=4, a=0.95. Fig. 10. Plateau TF. N=5, a=0.95. 

The experiments described above have shown that to 

find the global and local extrema at ME TF recommended 

to use N>5. Also, a parameter can significantly improve 

the drop-out process of sub-local populations. To optimize 

TF with plurality of global extrema recommended use 

a<0.85. To optimize TF with plurality of global and local 

extrema recommended use a>0.85. 

For the best result of modification on different ME TFs, 

additional sub-optimization of the method parameters is 

necessary. 

V. COMPARING ME SOMA RESULT

ME SOMA comparing with other analogues has two 

problems: first – is a little number of ME SO algorithm 

and second – is papers, which describing these algorithms 

usually do not contain any numerical experimental data or 

optimization problem is far from TF. Therefore, the 

comparison will be with the results presented in the [23], 

which described modifications of PSO, GA and Ant 

Colony Optimization (ACO). Table 2 illustrates standard 

values of Rastrigin TF extreme. Table 3 demonstrates the 

(a) Rastrigin TF. N = 15, a =
0.95.

(Search Optimization Opportunities of Modified Self-Organizing Migrating Algorithm for Solving the Multi-Extremal Problems) 

4 

Fig. 2. Rastrigin TF. N=15, a=0.95. Fig. 3. Rosenbrock TF. N=4, a=0.999. Fig. 4. Himmelblau TF. N=4, a=0.8. 

Fig. 5. Lambda TF. N=3, a=0.95. Fig. 6. Schwefel TF. N=5, a=0.85. Fig. 7. Giunta TF. N=4, a=0.85. 

Fig. 8. Ursem TF. N=4, a=0.85. Fig. 9. Shubert TF. N=4, a=0.95. Fig. 10. Plateau TF. N=5, a=0.95. 

The experiments described above have shown that to 

find the global and local extrema at ME TF recommended 

to use N>5. Also, a parameter can significantly improve 

the drop-out process of sub-local populations. To optimize 

TF with plurality of global extrema recommended use 

a<0.85. To optimize TF with plurality of global and local 

extrema recommended use a>0.85. 

For the best result of modification on different ME TFs, 

additional sub-optimization of the method parameters is 

necessary. 

V. COMPARING ME SOMA RESULT

ME SOMA comparing with other analogues has two 

problems: first – is a little number of ME SO algorithm 

and second – is papers, which describing these algorithms 

usually do not contain any numerical experimental data or 

optimization problem is far from TF. Therefore, the 

comparison will be with the results presented in the [23], 

which described modifications of PSO, GA and Ant 

Colony Optimization (ACO). Table 2 illustrates standard 

values of Rastrigin TF extreme. Table 3 demonstrates the 

(b) Rosenbrock TF. N = 4, a =
0.999.
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(c) Himmelblau TF. N = 4, a =
0.8.
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(d) Lambda TF. N = 3, a = 0.95.
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(e) Schwefel TF. N = 5, a = 0.85.
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(f) Giunta TF. N = 4, a = 0.85.
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(g) Ursem TF. N = 4, a = 0.85.
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(h) Shubert TF. N = 4, a = 0.95.
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(i) Plateau TF. N = 5, a = 0.95.

Fig. 2: ME SOMA modi�caton results for di�erent TF.

count) and it is not a problem, because cluster-
ing by Euclidean distance delete sub-local pop-
ulation. But one sub-local extremum localized,
de�ned by light-green color. This can be cor-
rect by changing a parameter. When SOMA
try �nd plurality of extrema in not ME TF
it gets sub-local clusters as seen on Fig. 2(b).
Figure 2(c) is good demonstration of deleting
sub-local extrema by varying a parameter. A

little number of N leads to allocating not all
global extrema as seen above on Fig. 2(d).
A little number of N leads to allocating not
all global and local extrema as seen above on
Fig. 2(e). Positions of clusters on Fig. 2(i) not
symmetrical, as in other functions due to the
nature of this function.
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The experiments described above have shown
that to �nd the global and local extrema at ME
TF recommended to use N > 5. Also, a param-
eter can signi�cantly improve the drop-out pro-
cess of sub-local populations. To optimize TF
with plurality of global extrema recommended
use a < 0.85. To optimize TF with plurality
of global and local extrema recommended use
a > 0.85.

5. Comparing ME SOMA

Result

ME SOMA comparing with other analogues has
two problems: �rst - is a little number of ME
SO algorithm and second - is papers, which de-
scribing these algorithms usually do not con-
tain any numerical experimental data or opti-
mization problem is far from TF. Therefore, the
comparison will be with the results presented
in the [23], which described modi�cations of
PSO, GA and Ant Colony Optimization (ACO).
Table 2 illustrates standard values of Rastri-
gin TF extreme. Table 3 demonstrates the re-
sult, that were conducted on Rastrigin TF with
(x, y) ∈ [−1.5, 1.5] dimension domains and how
much PSO, GA, ACO and ME SOMA invocated
CF to obtained these results.

ME SOMA parameters: N = 3, Migrations =
10, PopSize = 10, Step = 0.11, PathLength = 3,
PRT = 0.1, MinDiv = 0.01, a = 0.95, Strategy
= All to All Adaptive.

The time consuming criteria was omitted, be-
cause of the inexpediency of its comparison in
these two-dimensional test problems. If we will
carry out the research in tasks of large dimen-
sions (NP-complete problems), this criterion is
very important for comparing the e�ectiveness
of methods.

As a result, the minimum and average errors
(in percentage) of the obtained approximation
(see Tab. 1), relative to the standard, were:

• for PSO: ∼1.94e−6 % and ∼0.4456 %,

• for GA: ∼7.1e−4 % and ∼1.7976 %,

• for ACO: ∼1.5e−6 % and ∼0.7829 %,

Tab. 2: Rastrigin TF extreme standard.

No. x y F (x, y)
1 −1 1 2
2 −1 0 1
3 −1 −1 2
4 0 1 1
5 0 0 0
6 0 −1 1
7 1 1 2
8 1 0 1
9 1 −1 2

Tab. 3: ME SOMA, PSO, GA and ACO CF comparing.

No.
PSO GA ACO ME SOMA

F (x, y)
1 1.9901 2.01775 2.01637 1.98993
2 0.995 1.00137 0.98972 0.9954
3 1.9899 2.06707 2.0165 1.98991
4 0.995 1.0611 0.9889 0.9954
5 1.94e−6 0.00071 1.5e−6 2.77e−18

6 0.995 1.01436 0.9893 0.9952
7 1.9899 2.00947 1.9898 1.98992
8 0.995 1.03398 0.9899 0.9953
9 1.9899 1.993 2.0135 1.98994

CF invocated number

20200 22500 20000 33055

• for ME SOMA: ∼2.77e−18 % and
∼0.4317 %.

ME SOMA has the best global result and a
smaller obtained spread of the values. This fact
indicates greater reliability of the algorithm.

But, for these experiments, ME SOMA need
more CF invocated number. This is due to the
fact that MM SOMA contains a deterministic
part ("Step" parameter). However, it allows
converge to all system agents and get a more ac-
curate result. And CF invocated number of all
current algorithms can be signi�cantly changed
at other tasks (e. g. in NP-complete tasks).

6. Related Work

In the design optimization process, we are often
confronted with problems facing the ME condi-
tions. Such situation requires decisions, which
take into consideration several identical or close
extremes, and the best choice in-between them
has to be made. The classical theory of schedul-
ing gives examples, where several identical op-
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timums and identical sub-optimums, close to
them exist [1], [3], [4] and [5]. The majority of
discrete, integer and combinatory programming
problems di�ers in such property [24], [22], [23],
[24] and [25], in particular, when �nding solu-
tion for graphs [26], [27], [28] and [29]. The �-
nite number of admissible decisions requires con-
sidering the ME solutions for the discrete envi-
ronment optimization. There are many addi-
tional conditions, which can help to choose the
extreme, equivalent or close in size, and satisfy
both, the numerical criteria estimates and the
heuristic ideas. Therefore, the choice, of the
most e�ective methods and algorithms, is an ex-
tremely important step to �nd such solution of
the ME task.

7. Conclusions

The analysis of SOMA application for solving
the ME tasks showed that modi�cation is ef-
�cient, e�ective, and bring some essential fea-
tures to the presented solutions. The spe-
ci�c approaches to solve the task for each of
these particular cases is determined through the
analysis of the algorithm features; the detec-
tion and identi�cation of local extremes, cluster-
ing method and subsequent operations resulting
from such analysis. Also, ME SOMA modi�ca-
tion showed reasonable performance.

To conclude, studied SOMA is relevant and
promising for future applications. The speci�c
choice of the algorithm tool for solving ME
tasks depends on the experience and personal
researcher preferences, as well as on the special
features of the domain speci�c research area.
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