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Abstract. We prove a local existence of weak so-
lutions of semilinear parabolic equations with a
strong singular absorption and a source. More-
over, we consider the qualitative behavior of so-
lutions. We show that any solution exists glob-
ally and vanishes after a finite time if either the
initial data or the source term s small enough.
On the other hand, we point out some crite-
ria such that solutions are explosive in a finite
time.
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1. Introduction

In this paper, we are interested in nonnegative
solutions of the following equation:

Ou — Au+u P x(us0p = f(u) in Q x (0,7,
u(z,t) =0 on 90 x (0,T),
u(z,0) = uo(z) in Q,

(1)

where Q is a bounded domain in RV, 0 < 8 < 1,
and x(,>0) denotes the characteristic function
of the set of points (z,t) where u(z,t) > 0, i.e:

1, ifu>0,
X{u>0} =\ o if y < 0.
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Note that the absorption term UiﬁX{u>o} be-
comes singular when u is near to 0, and we im-
pose tactically u=" x50y = 0 whenever u = 0.

Problem Eq. can be considered as a limit of
mathematical models describing enzymatic ki-
netics (see [I]), or the Langmuir-Hinshelwood
model of the heterogeneous chemical catalyst
(see, e.g. [19] p. 68, [22], [18]). This problem
has been studied by the authors in [18], [29],
28], [13], [16]. [, [71, 8], [6], [20], and refer-
ences therein. These authors have considered
the existence and uniqueness, and the qualita-
tive behavior of these solutions. For example,
when f = 0, D. Phillips [I8] proved the existence
of solution for the Cauchy problem associating
to Eq. . A partial uniqueness of solution of
Eq. was proved by J. Davila and M. Mon-
tenegro, [9] for a class of solutions with initial
data ug(z) > Cdist(z, 0", for p € (1, 125)
(see also [5] the uniqueness in a different class
of solutions). A beautiful result established by
M. Winkler, [20], showed that the uniqueness of
solution fails in general. One of the interesting
behaviors of solutions of Eq. is the extinc-
tion that any solution vanishes after a finite time
even beginning with a positive initial data, see
[18], [28] ( see also [7] for a quasilinear equation
of this type). It is known that this phenomenon
occurs according to the presence of the nonlin-
ear singular absorption u‘BX{u>O}. One can see
the same situation for the nonlinear absorption
u?, for B € (0,1), see [21] and references therein.
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Equation with source term f(u) satisfying
the sublinear condition, i.e: f(u) < C(u + 1),
was considered by J. Davila and M. Montene-
gro, [9]. The authors proved the existence of
solution and showed that the measure of the set
{(z,t) € 2% (0,00) : u(x,t) = 0} is positive (see
also a more general statement in [23]). In other
words, the solution may exhibit the quenching
behavior. Still in the sublinear case with source
term Af(u), M. Montenegro [I7] proved that
there is a real number Ay > 0 such that for any
A € (0, Ag), there is ¢ty > 0 such that

u(z,tg) =0, VaeQ.
And it is called the complete quenching phe-
nomenon.

From our knowledge, Eq. with a general
source term f(u) has not been studied com-
pletely, such as f(u) = u?. Thus, we would like
to investigate existence, and the qualitative be-
havior of solutions of Eq. for source term
f(w). It is well known that nonlinear parabolic
equations with general source f(u) may cause
the finite time blow-up, i.e: there is a time
To > 0 such that limy,7, ||u(t)]ee — —+o0.
As mentioned above, the nonlinear absorption
u™PX{u>0} causes the complete quenching phe-
nomenon. Thus, it is interesting to see when the
complete quenching prevails the blow-up, and
conversely. We also note that the similar ques-
tions were studied by [7], [8], [6] for the quasilin-
ear parabolic equations of this type. To be sim-
ple, we consider f(u) = uP, p > 1 through this
paper, although our analysis can be applied to a
general source f(u), which is a locally Lipschitz
function on [0, 00). Before discussing the behav-
iors of solutions of Eq. , it is necessary to in-
troduce a notion of weak solution, and establish
first a local existence of solutions of Eq. .

Definition 1. Let up € L>®(Q). A nonney-
ative function u(x,t) is called a weak solution
Of Eq. " Zf u75X{u>0} € Ll(Q x (OaT))’
and u € LP(0,T; Wy () N L=(Q x (0,T)) N
C([0,T); LY(Q)) satisfies Eq. in the sense of
distributions D'(Q x (0,T)), i.e:

I Jo, (Fude + VuVe + uPxius0y 6 — f(u)e) drdt = 0
(2)
for all ¢ € C (2 x (0,T)).
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Our local existence result is as follows.

Theorem 1. Let ug € L>(Q), and f(u) = uP.
Then, there exists a finite time T = T(ug) > 0
such that Eq. has a mazximal weak solution
uin Q x (0,T), i.e: for any weak solution v in
Q% (0,T), we have
v<u, inQx(0,T).
Moreover, there is a positive constant C =
C(J|uol|so) such that

|Vu(z,7)]? < Cul=? (7'71 + 1) , (3)

for a.e (z,7) € Q x (0,T).
1
Besides, if V(ug) € L>®(Q), with v =
ﬁ, then there is a positive constant C =
1
Clluolloos [V (ug leo) such that
Vu(z,7)* < Cu' =P (2, 7),

(4)
for a.e (z,7) € QA x (0,T).

Remark 1. The result of Theorem [1| implies

that u is continuous up to the boundary. Fur-

thermore, u is continuous up to t = 0 if provided
1

V(ug) € L=(Q).

Our next purpose is to study the global exis-
tence of solutions. Particularly, we are inter-
ested in the complete quenching phenomenon
that any solution vanishes identically after a fi-
nite time under some circumstances. To state
our global existence result and the complete
quenching phenomenon, we consider Eq.
with source term AuP, for any A > 0. In some
of our considerations, a crucial role is played by
the first eigenvalue \; of the Dirichlet problem:

in Q,

on 0N

{ —Ad =)\ (5)

o(x) =0,

where @ is the first normalized eigenfunction,
Jo ®(z)dz = 1. It is known that A; decreases
when the measure of the spatial domain 2 in-
creases. Then, we have a result of global exis-
tence of solution.

Theorem 2. Let ug € L>(Q), and f(u) = Au?,
for A > 0. Assume that there are an open
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bounded domain gy, and a positive real number
ko such that Q CC Qq, and
uo(x) < ko®q,(x), fora.ex e,
koA, Pa, (2) + kg " 00 (x) = A(ko®a, ()"
V(z,t) € 2 x (0,00),
(6)
where \1 o, and g, are the first eigenvalue and
the first eigenfunction of problem Eq. corre-
sponding to Qg. Then, any solution v of Eq.
ezists globally and satisfies
v(z,t) < ko®gq, (), in Qx(0,00). (7)
Remark 2. For a given X > 0; if uy is
small enough then Eq. @ holds, and conversely.
Thus, we obtain the global existence of solutions
if provided either ug or \ is small enough.

Next, we give the complete quenching results.

Theorem 3. Let ug € L>®(Q2), and f(u) = AuP.
For a given XA > 0, then every solution of Fq.
is extinct after a finite time if provided that
lluolloo is small enough.

Theorem 4. For a given ug € L>(Q2), there is
a real number Ny > 0 such that every solution of
Eq. quenches after a finite time if provided
NS (0, /\0)

Finally, we study the global nonexistence of
solutions of Eq. , the so called finite time
blow-up, see [15], [16], [12], [11], [25], [26], [30].
In this paper, we point out some criteria on ini-
tial data ug in order to guarantee the blow-up of
solution in a finite time. Thus, it is convenient
to introduce the energy functional

1 , 1

/Q<2|Vu(t) + 13
1 en

p+1up (t)) dz.

E(t) u' =P (t)

(8)

Then we have a blowing up result as follows:

Theorem 5. Let ug € L*°(Q)NHJ (). Suppose
that f(u) = uP, for p> 1, and E(0) < 0. Let u
be a solution of Eq. . Then, u blows up in a
finite time.
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The paper is organized as follows: In the
next section, we prove some gradient estimates
for the approximating solutions. In Sec.
we shall prove the local existence results. The
global existence of solutions and the complete
quenching phenomenon will be considered in
Sec. [ 4] Section is devoted to study the
non-global existence of solution. In the final
Section, we give some simulation in order to il-
lustrate the interesting phenomenon: quenching
versus blow-up.

Several notations which will be used through
this paper are the following: we denote by C a
general positive constant, possibly varying from
line to line. Furthermore, the constants which
depend on parameters will be emphasized by us-
ing parentheses. For example, C = C(p, 5, 7)
means that C' depends on p, 5,7. And Supp(f)
is denoted as the support compact of f.

2. Gradient estimate for
the approximate
solutions

In this section, we consider the regularized prob-
lem (P.,) of Eq. (1)) as follows:

O — Au+ ge(u) =w?  in Q x (0, 00),
u=rn on 990 x (0,00),
u(0) =up +1n on )

for any 0 < 1 < &, with g.(s) = .(s)s77,
Ye(s) = ¥(2), and ¥ € C®(R) is a non-
decreasing function on R such that ¢ (s) = 0 for
s <1, and 9¥(s) = 1 for s > 2. Note that g. is
a globally Lipschitz function for any £ > 0. We
will show that solution w., of equation (P ,)
tends to a solution of Eq. as n,e — 0. In
passing to the limit, we need to derive some gra-
dient estimates for solution w. ,. Then, we have

the following result:

Lemma 1. Let ug € C°(2), ug # 0. There ez-
ists a classical unique solution u. . of (P.,) in
Qx(0,7).

i) Moreover, there is a constant C' > 0 only de-
pending on B, T, f, ||uo||leo such that

Ve (o, 7 < Cod ) (7 4 1),

(9)
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for any (z,7) € Q x (0,7).
i) If V(ugj) € L>®(Q), then we get

s (),

Ve (2, 7)[* < Cug, (10)

for any (z,7) € Q x (0,T), with C > 0 merely
1
depends on 5,T, ||uol|co, ||V (g )|loo-

Proof. The proof of this lemma is similar to the
one in [20]. Thus, we skip it and refer to Lemma
3.1, [20]. O

Thanks to Lemma|[T] and the classical regular-
ity (see [14]), we can pass to the limit as n — 0
in problem (P ;). Then, problem (FP;):

Oru — Au + ge(u) = uP in Q x (0, 00),
u=0 on 99 x (0, 00),
u(0) = ug on

has a unique solution u.. Note that u. also sat-
isfies Lemma [dl

3. Local existence

In this section, we consider a local existence of
solution of problem Eq. . We give the proof
of Theorem [II

Proof of Theorem[1] Let u. be a unique solution
of problem (P.) in © x (0,7). Then, we show
that {uc}eso is a non-decreasing sequence. In-
deed, we have

9e,(8) > gey(s), for any 0 < g1 < es.

This implies that u., is a sub-solution of the
equation satisfied by w.,. Therefore, the com-
parison principle yields

in Q% (0,7),

U/El S uEQ; vgl < 527

so the conclusion follows. Consequently, there
is a nonnegative function u such that u. | u as
e— 0.

Obviously, we have from the comparison prin-
ciple

ue <T() = (Juoll5” = (p—1)8) 7,
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for any (z,t) € Q x (0,Tp), To = ”uﬁ‘#-

Integrating equation (P-) on Q x (0,7T) yields

T
/ug(x,T)dx—/ Vue.ndods
0 Joq

Q
T
+/ /ga(us)dQTdS:/ug(x,O)dx
0 Q Q
T
+/ /u‘gdmds, vT € (0,Tp),
0 Jo
where n is the unit outward normal vector of

0.

Since Vu..n < 0, we obtain

/OT/Qge(ug)dxds < /Q (uo(x) + €)da

T
+/ / uPdxds.
0o Ja

This inequality and the boundedness of u. above
imply that ||g(ue)||L1(x(0,7)) is bounded by a
constant not depending on e.

Thanks to Fatou’s lemma, there is a function
YT € L2 x (0,7T)) such that

liminf g.(u.) =Y, in LY(Q x (0,7)). (11)
e—0
Next, the monotonicity of {uc}eso deduces

gE(UE)(xvt) > gs(UE)X{u>O}(x7t)>
for (z,t) € Q x (0,T), so

o _ S -8
lll;n_:(r)lfgg(ug)(x,t) T(x,t) > u " xuso0y (2, 1),
(12)
for (z,t) € 2 x (0,T). Then, u™Px (>0} is inte-
grable on © x (0,T).

Actually, we shall prove

Y =u"Xpus0y, I LHQx(0,7). (13)

On the other hand, we use a result of gradient
convergence of Boccardo et al., [3], [2] in order
to obtain

e—0

Vu. — Vu, for a.e (z,t) € Qx (0,T). (14)

As a result, Vu fulfills estimate Eq. for a.e
(x,t) € Q2 x (0,T), and for any 7 > 0

Vu. =2 Vu, in L'(Qx (r,T)), Vre[l,00).
(15)
137
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Now, it suffices to demonstrate that u satisfies In fact, since u satisfies estimate Eq. , we have
Eq. (1) in the sense of distribution.

1 U
For any n > 0 fixed, we use the test function */ |Vu|2|w’(5)¢>|dmds
hy(ue)@, for any ¢ € CZ(Q x (0,T)), to the Supp(¢)
equation satisfied by u.. Then, using integration < C’l / wt—Bdrds
by parts yields " J Supp($)N{n<u<2n}
<2C uPdads,

Ug Supp(¢)N{n<u<2n}

1
[ (= wudecs Hvup e
Supp() n n where Supp(¢) means the support compact of
+Vu. Vo, (us) + ge (ue) ¥y (ue)d ¢, and the constant C' > 0 is independent of 7.

Since u™?x(y>0} is integrable on Q x (0,T), we
+uli, (u€)¢> dzds =0, obtain

lim wPdrds =0,
with W, (u) = [, ¥, (s)ds. Note that ¢,,(.) plays 170 Supp(@)n{n<u<2n}
a role in avoiding the singularity of the term
u Px{u>0y as u is near 0. Thus, there is no
problem of going to the limit as ¢ — 0 in the
indicated equation in order to obtain

which implies the conclusion Eq. (17). A com-
bination of Eq. and Eq. deduces

/ ( —upy + Vu.Vo
Supp(o)

(18)
1 _
/ ( — W () + — |Vl (5)o +u™ X 016 + [ (u, 2, 5)¢) dwds = 0.
Supp(¢) n n _ )
VUVt (u) +U_ﬁ¢n(u)¢ %g ;t)})ler words, u satisfies Eq. in D'(Q2 x
+f(u, 2, 5)7/”7(”)‘;5) dxds = 0. As mentioned above, we prove Eq. 1nOW.
From equation (P;), we have
Next, to the limit — 0 in the last
ext, we go to the limit as 7 in the las (= wede + ViV
equation. Supp()
By Eq. (14), Eq. (15)), and the integration of 49 (ue)p + f(ue, z,5)¢)dwds = 0,
UfﬁX{u>0} in Q x (0,7), it is not difficult to
verify for any ¢ € C°(Q2 x (0,7)), ¢ > 0.
Then, letting ¢ — 0 deduces
lim U, (u)pedzds :/ uprdrds,
n—0 Supp(¢) Supp(p) / (—ud)t + VUV¢) dl’ds*‘l‘
Supp(¢)
lim Vu.Véipy,(u)daeds :/ Vu.Vodzrds,
1720/ Supp(¢) Supp(¢) lim ge(us)p dxds (19)
€0 supp()
li -8 dads = “Bxtu )
730 Supp(¢)u Un(u)gdads /9upp(¢)u X0y +/ flu,z,t)¢ dxds = 0.
Supp(¢)
li P drds = Podrds.
50 Supp(¢)u Yalu)ddeds /Supp(d»u ol 8(16) By Eq. and Eq. , we get
Next, we show that )
lim ge(ue)o dxds
e=0 SUPP(d’) (20)
1
lim 7|Vu|21//(g)q§ drds =0. (17) = / P (us0y ¢ dads.
1720 Supp(g) 1 U Supp(¢)
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According to Eq. , Eq. and Fatou’s
lemma, we obtain

/ u_ﬁx{u>0}¢dmds > / Yopdxds,
Supp() Supp(p)

Vo € C (2 x (0,T)), ¢ = 0.
The last inequality and Eq. yield conclu-
sion Eq. (13).

The conclusion u € C([0,T]; L*(Q)) is well
known, so we skip its proof and refer to the com-
pactness result of J. Simon, [33]. Thus, v is a
weak solution of Eq. .

To complete the proof of Theorem [I} it re-
mains to show that u is the maximal solution of

Eq. .
Let v be any weak solution of Eq. (1) on Q x
(0,T). Then, we have

v(x,t) <wu(z,t), for ae (z,t) € Qx(0,7T).

In fact, we observe that

ge(v) < vfﬁx{wo}, Ve > 0.

Thus,

8tU_AU+gE(U) < f(U,J?,t), in D/(QX (O7T))a

which implies that v is a sub-solution of equation
(Py).

By the comparison principle, we get

v(z,t) <wuc(x,t), forae (z,t) € Qx(0,7).

Letting € — 0 yields the result. O

4. Global existence and
complete quenching
phenomenon

In this part, we study the global existence of so-
lution and the complete quenching phenomenon
through proving Theorem [2, and Theorem [3]
Since wu is the maximal solution, then it suffices
to work on wu.

(© 2017 Journal of Advanced Engineering and Computation (JAEC)

Proof of Theorem[4 Let u be the maximal so-
lution of Eq. in Q x (0,T). To prove that u
exists globally, we show that u is bounded by a
constant not depending on ¢.

We first remind that igé{@go ()} > 0, for
Q cc Q.

1
Thus, for any € € <O, B iggz{koq’ﬂo(ﬂv)}>a we
have . (ko®a,) = ky "
Put

L.(v) :=vy — Av+ g.(v) — AP,
Then,

Le(ko®qy,) = ko1 (Q0)Pay+ky "o — (ko o, )P

(21)
By Eq. (6), we observe that L.(ko®q,) > 0, in
Q2 x (0,T). Therefore, ko®gq, is a super-solution
of equation (P.). The strong comparison theo-
rem yields

ue(z,t) < koPq, (z), ¥Y(z,t) € Qx(0,T).

Since u. is bounded on Q x (0,7, the standard
argument allows us to extend the existence of u.
on Qx (0,7 +dg), Q@ x (0,T + 2dp),..., for some
d9 > 0, thereby proves the global existence of
solution u.. By the monotonicity of u., v must
exist globally, and the conclusion Eq. follows
immediately. O

Next, we will show that for a given A > 0, the
maximal solution u must vanish identically after
a finite time if ||up||oo is small enough.

Proof of Theorem[3 Since |lugpllcc is small
enough, we can choose a real number ky > 0
small as well, and an open bounded domain
Qo containing ), such that Eq. @ holds.
Thanks to Theorem the maximal solu-
tion u exists globally, and it is bounded by

M = ko sup{®q, ()}
e
Using the test function u to Eq. () gives us

1d

2 Quz(t)dx—l—/g(|Vu(t)|2+u1_5(t)) dr —

)\/ uPTrdz, Vit > 0.
Q
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Since u < M, we have

1
Ld u2(t)d:c+/ (IVu(®)? + a2 (1)) dx
2 dt A
gAMP+6/ ur=P(t)dx, Vt> 0.
Q
Or

2 X u 2CC
(t)d +/Q|V ()| dx+

(1_CM)/QUI_

where ¢y = AMPHB. Note that M is as small
as ||uglleo- Thus, if ||ug||o is small enough then
we get (1 —cpr) > g > 0.

It follows from Eq. that

(22)
A(t)dz <0,

1d

—— [ W*(t)dz + co/ (IVu(t)Pdz +u' A (1)) dz < 0.

(23)

Now, using Garliardo-Nirenberg’s inequality
[31] yields

lu(®)ll 22 (@) < el Vu()l| 72 )l o)

:c(/Q|Vu(t)|2dx>g </Qu(t)d$>l 9,

with 9 = N+L

Ni3- Thus,

lu(t)||2) < c (/Q (|Vu(t)|2 n u(t))dJ;) g+1-9
=¢ (/Q (IVu(t)? + MPu'= (1)) dx) 1-6/2
= (/Q (IVu®)l” +w'=7(0) dx) -

with ¢ = e1(8, M) > 0.

Then, we obtain

([ ) =

with ¢y = CQ(/B,M,N) > 0.

By Eq. and Eq. (24), there is a positive
constant ¢z = ¢3(8, M) > 0 such that

< C2/ (1T + 2 (1)) da,
’ (24)

N+42

y'(t) + cay™+3(t) <0, fort >0, (25)

140

with y(t) /|uwt|dw

If we can show that there exists a time tg €
[0,00) such that y(ty) = 0, it follows then from
Eq. that y(t) = 0, for any t > to, thereby
proves Theorem [3]
Indeed, we assume a contradiction that y(¢) > 0,
for any ¢ > 0. Solving the ordinary differential

inequality Eq. yields

1

YT (1) + gt <y (0) =

2 _
N+3

luol| 2%y, ¥t >0,

(26)
with ¢4 = m This leads to a contradiction as
t is sufficiently large. Thus, u© must quench after
a finite time. O

Similarly, for a given initial data ug, we also
obtain the complete quenching result for the case
A small. Thus, Theorem [ follows.

Remark 3. Inequality Eq. implies that
the emtinction time of u, denoted by T* <

||“0||L2 Q)
4

5. Non-global existence of
solutions

In this section, we study the non-global existence
of solutions of Eq. . We give the proof of
Theorem [l

Proof of Theorem[5 By multiplying u (resp.
uy) to Eq. , we have the following integral

equations:
—/ (\Vu(x,t)|2+
Q (27)
u P (x,t) — utt (x, t))d:c,

and

¢ 1 1
U 2da7ds+/ Z|Vu(t)]? +
| [l [ (GIVuP + 1=

1
_q n 1uq+1(t))dx =
-8 _ 1
+1

ul_B(t)

qul)d.T

(28)

L+ L
/Q(2|VU0| B

(© 2017 Journal of Advanced Engineering and Computation (JAEC)
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see [30], [32]. By combining Eq. and
Eq. (28), we obtain

1d
24t Jg

-1
ut =P (x, t)dx + quil/ ut™ (z, t)dz.
q Q

u?(z,t)dr = —2E(t)

1+5
+1*ﬂ Q

Since E(0) < 0, Eq. implies E(t) < 0, for
any t > 0. It follows then from the last inequal-
ity that

1d -1
—— [ W*(x,t)dx > L/ uldr.  (29)

By Holder’s inequality, we get

Ea
/uzdm < </ uq+1dz> |Q|%
Q Q

From Eq. and Eq. (30, we obtain

g+1

y(t)>Cy = (t),

with y(t) = [, u?(x,t)dx, and C = 2“17‘12_.
y(t) fQ (2,1) (q+1)|ﬂ\Tl

This inequality implies that y(t) — +oo as
1—

A|uoll 2 (o

7(1_1- D
(¢+1)|Q =

t — Ty, with T =

6. Simulation results

In this part, we will illustrate our theoretical
results with some numerical experiences. In the
sequel, we consider Eq. with p = 2, 8 =
0.8, I = (0,L), and up(x) = z(1 — z/L). Our
numerical scheme mimics the one in the paper of
[10]. Similarly, we use the linear finite elements
with mass lumping in a uniform mess for the
space variable to discretize our Eq. (I). The
reader who is interested in detail can find in [I0].

We fix L = 2.

With A = 14, the maximal solution of Eq.
vanished after ¢ = 0.36, see Fig. [Il While \ =
15, the maximal solution of Eq. blows up at
t = 0.33, see Fig.

(© 2017 Journal of Advanced Engineering and Computation (JAEC)

Fig.

| “\\
[0\
9”":”2}3\\

D _
I

///I l"'. e =

Fig. 2: Evolution of the maximal solution of Eq. .
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