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Abstract. Simultaneous localization and map-
ping (SLAM) is an essential capability for Un-
manned Ground Vehicles (UGVs) travelling in
unknown environments where globally accurate
position data as GPS is not available. It is an
important topic in the autonomous mobile robot
research. This paper presents an Adaptive De-
centralized Cooperative Vision-based SLAM so-
lution for multiple UGVs, using the Adaptive
Covariance Intersection (ACI) supported by a
stereo vision sensor. In recent years, SLAM
problem has gotten a speci�c consideration, the
most commonly used approaches are the EKF-
SLAM algorithm and the FAST-SLAM algo-
rithm. The primary, which requires an accu-
rate process and an observation model, su�ers
from the linearization problem. The last men-
tioned is not suitable for real-time implementa-
tion. In our work, the Visual SLAM (VSLAM)
problem could be solved based on the Smooth
Variable Structure Filter (SVSF) is proposed.
This new �lter is robust and stable to modelling
uncertainties making it suitable for UGV local-
ization and mapping problem. This new strat-
egy retains the near optimal performance of the
SVSF when applied to an uncertain system, it
has the added bene�t of presenting a consider-

able improvement in the robustness of the es-
timation process. All UGVs will add data fea-
tures sorted by the ACI that estimate position
on the global map. This solution gives, as a re-
sult, a large reliable map constructed by a group
of UGVs plotted on it. This paper presents a
Cooperative SVSF-VSLAM algorithm that con-
tributes to solve the Adaptive Cooperative Vision
SLAM problem for multiple UGVs. The algo-
rithm was implemented on three mobile robots
Pioneer 3-AT, using stereo vision sensors. Sim-
ulation results show e�ciency and give an ad-
vantage to our proposed algorithm, compared to
the Cooperative EKF-VSLAM algorithm mainly
concerning the noise quality.
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1. Introduction

In the last few years, the simultaneous localiza-
tion and mapping (SLAM) became an impor-
tant topic of research in the robotics commu-
nity. Accurate navigation can be achieved by
accurate localization within an accurate map.
SLAM is the process that enables a mobile robot
to localize and build a map of an unknown envi-
ronment using only observations relative to the
most relevant features detected by its sensors.
The beauty of the Kalman Filter (KF) comes
from the fact that they estimate a fully cor-
related posterior over feature maps and robot
poses. Their weakness lies in the strong assump-
tions that have to be made on both the robot
motion model and the sensor noise. In addition,
the EKF-SLAM algorithm only works with fea-
ture maps. And it is not always easy to de�ne
and extract features in unstructured and out-
door environments. The EKF approximates the
SLAM posterior as a high-dimensional Gaussian
overall feature in the map and the robot pose.
The single hypothesis and quadratic complex-
ity due to the high dimensional Gaussian ap-
proximations for states of the robot and land-
marks locations makes the o�-diagonal elements
of the covariance matrix very large. This causes
more complexity and cost increase of computa-
tion and, in most cases, diverges the �lter [10].
In addition, the EKF covariance matrices are
quadratic in the size of the map, and updat-
ing them requires time quadratic in the num-
ber of landmarks [12]. Moreover, when a large
number of landmarks are present in the envi-
ronment, the computation becomes almost im-
possible. Quadratic complexity is a consequence
of the Gaussian representation employed by the
EKF.
There is another type of �lter started to rise

and take place in estimation utilizing the princi-
ples of the Unscented Kalman Filter (UKF) uses
a unique representation of a Gaussian random
variable in N dimensions using 2N + 1 samples,
called sigma points. The representation utilizes
the properties of the matrix square root and the
covariance de�nitions to select these points in
such a way that they have the same covariance
as the Gaussian they approximate [20]. The
UKF-SLAM results comparable to a third-order

Taylor series expansion of the state-model, while
EKF are only accurate to a �rst-order lineariza-
tion. The Unscented transform approach also
has another advantage: noise can be treated in a
nonlinear fashion to account for non-Gaussian or
non-additive noises. The UKF su�ers less from
linearization, though it is not exempt. The UKF
does not fully recover from poor landmarks, is
the same as in the EKF case.
Fast-SLAM is an algorithm which uses the

multi-hypothesis data association and logarith-
mic complexity instead of quadratic. This ap-
proach, known as Fast-SLAM utilizes Rao-Black
wellised particle �lter to solve the SLAM prob-
lem e�ciently. Using Fast-SLAM algorithm,
the posterior estimation will be over the robot's
pose and landmarks locations [11]. The Fast-
SLAM algorithm has been implemented success-
fully over thousands of landmarks and compare
to EKF-SLAM that can only handle a few hun-
dreds of landmarks, it has appeared with con-
siderable advantages [9, 11]. The Fast-SLAM
shares the fancy property with KF approach
when it maintains the full posterior but is much
faster compared to the classical KF-SLAM. It
can be applied for feature-based and grid-based
mapping so that it is also suitable for outdoor
applications. In practice, for applications where
a consistent global map is required and a real-
time performance is not necessary (for example
the applications focusing on constructing accu-
rate maps), Fast-SLAM is a better choice. How-
ever, for applications where only an instanta-
neous map is required (obstacle avoidance appli-
cations). The development of a new algorithm
based on the Smooth Variable Structure Filter
(SVSF) is proposed for state and parameter es-
timation which is robust and stable to mod-
elling uncertainties making it suitable for Au-
tonomous Unmanned Vehicle localization and
mapping problem [14]-[19].
Many algorithms exist today to solve SLAM

problems for the single mobile robot, there is still
a challenge to perform cooperative SLAM, espe-
cially with a robust �lter. Cooperative Simul-
taneous Localization and Mapping (CSLAM)
study requires the use of multiple autonomous
UGVs [1]. They show many advantages, among
them we have: increasing the e�ciency of the
overall system, extending the error tolerance,
improving reliability and/or performance, ra-
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pidity, �exibility, and reduction of cost. The
interaction of navigational and sensitivity in-
formation provides better features of a de�ned
area. Many studies, experiments and researches
were made covering this topic. For instance,
Stoy in [2] performed simple relative localiza-
tion between collaborators. In [3] and [4], re-
search treats the problem of CSLAM with the
growing uncertainties supported by simulation
and experimental validation. Also, entropy
minimization [5], and information theory based
techniques were developed to solve Cooperative
SLAM problems [6].
The GPS denied environment, the expensive

cost of sensors; computational e�ciency, soft-
ware/network performance, and modelling er-
rors and uncertainties are crucial key points in
solving CSLAM problem. Research is consider-
ing cooperative data fusion, sensor mapping in
multiple vehicles, navigation scene [7]. In [8] we
�nd the Extended Kalman Filter based solution
for some cooperative SLAM and speci�cally co-
operative visual SLAM in [9, 10]. Also in [11, 12]
the cooperative Visual SLAM treated based on
particle �lter estimation scheme. The work pre-
sented in [12] is a part of research work done on
autonomous navigation for Micro Aerial Vehicle
(MAV), with SVSF �lter. To solve SLAM for
multiple UGVs, we can consider two main fam-
ilies of solutions: Centralized architecture and
Decentralized architecture.
In this paper, we presented a development

of a new predictor-corrector called the Adap-
tive Smooth Variable Structure Filter (ASVSF)
based on sliding model theory, using covariance
matrices to evaluate the uncertainty of the esti-
mation with optimal adaptive smoothing bound-
ary layer vector to solve the visual SLAM Prob-
lem [29, 30]. It presents stable and robust facul-
ties in modelling uncertainties [13, 14], which is
suitable for the localization and mapping prob-
lem of a cooperative UGVs. The adaptive SVSF
is a robust recursive estimation method that
deals e�ciently with initial conditions and mod-
elling errors of the odometer/stereo vision sys-
tem. Previous studies utilized single camera
as the best solution for SLAM problem, us-
ing SVSF �lter, but in this paper, multiple
UGVs system based on the Adaptive Decentral-
ized Cooperative architecture is considered us-
ing a stereo vision sensor [28]-[31]. The suc-

cess of this application depends highly on the
accuracy and robustness of the strategy of the
Smooth Variable Structure Filter SLAM imple-
mentation. The work presented in this paper
is organized as follows: Section 2 illustrates the
process models of UGV and stereo vision sensor.
Section 3 describes the SVSF-SLAM algorithm
and the Adaptive SVSF-SLAM algorithm in de-
tails. The cooperative SLAM of multiple UGVs
with decentralized architecture is described in
Section 4. Simulation and discussion are pre-
sented in Section 5 and concluding in Section
6.

2. Process models OF

UGV and stereo vision

sensor

2.1. Process model

The UGV used in our work is the Pioneer P3-
AT. The P3-AT is a non-holonomic robot with
four wheels [23]. According to [15], with this
control input and the location of the robot at the
previous time step, we can estimate the robot
current location by Xr,k+1

Yr,k+1

θr,k+1

 =

 Xr,k + ∆Tvkcos(θr,k)
Yr,k + ∆Tvksin(θr,k)

θr,k + ∆Twk


+

 εxr

εyr
εθr

 (1)

The robot evolution model re�ects the relation-
ship between the robot previous states XR,k and
its current state XR,k+1. In SLAM, the system
state vector has a position of the UGV (XR).
It is represented by XR = [Xr, Yr, θr]

T ∈ R3,
and we call a collection of M features a map
such that L = [L1, ..., LM ]T ∈ R3M , ∆T is the
sample period, εxr,yr,θr are the noise that arise
from the encoder and wheels slipping, etc. In
this work, we will use a point feature such that
for the ith feature: Li = [xi, yi, zi]

T . Where
x, y and z are the coordinates of the point
in a global frame of reference. We can write
equation 1 as follow
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XR,k+1 = f(XR,k, Uk, k) + εxr,yr,θr (2)

2.2. Stereo vision sensor model

The perspective camera model includes intrinsic
and extrinsic parameters. This model ensures
the geometric transformation between cam-
era/image and world/camera reference frames
respectively [22].

• Observation Point based Model

In order to perform the SLAM, the robot needs
to be able to select and track the landmarks
in its environment to localize itself. In this
paper, we opt for a point landmark in 3D space.
To compute the relative measurement of the
landmarks obtained from the images acquired
from the stereo vision sensor (Fig. 1).
For the simulation the SVSF visual SLAM

Fig. 1: Observation system geometry.

algorithm, we use theoretical data sets (a set
of 3D points) previously generated instead of
using real data. During the robot motion, the
point landmarks included in the vision sensor
�eld are detected in 3D space [16]. As said
previously, the stereo vision sensor provides
relative measurement Z = (Lrx, L

r
y, L

r
z)
T of the

landmarks with respect to the robot frame, this
measurement (observation) will be noted Z.
The model representing the robot frame coordi-
nates of an individual landmark, according to
its global frame coordinates Lg = (Lgx, L

g
y, L

g
z)
T

and the robot con�guration R = (xr, yr, 0)T is
called the direct model observation and will be
noted [16]

Z = h(R,Lg) + εx,y,z (3)

Z = MGR

 Lgx − xr
Lgy − yr
Lgz − 0

+

 εx
εy
εz

 (4)

where the global to the robot projection matrix
MGR is denoted by

MGR =

 (cos(θr) sin(θr) 0
−sin(θr) cos(θr) 0

0 0 1

 (5)

and εx,y,z presents the measurement noise.

• Inverse observation Point based

Model

The new observed landmark must be initialized
previously to be added to the state vector [17].
The initialization process is, in fact, the best
estimation of the landmark position, and it is
a fundamental point to SLAM implementation.
The observation model stated in (4) gives three
equations for three dimension variable Lg. The
3D coordinates of a new landmark (Lgx, L

g
y, L

g
z)
T

with respect to the global framework are initial-
ized by solving (3) as follows

Lg = h−1(R,Z) (6)

Lg = (MGR)−1Z +R (7)

3. Visual Adaptive

SVSF-SLAM algorithm

In 2007, the smooth variable structure �lter was
introduced. This �lter is based on the sliding
mode control and estimation techniques and
is formulated in a predictor-corrector fashion
[15, 18]. The estimation process may be summa-
rized by (8) to (13), and is repeated iteratively.
An a priori state estimate is calculated using
an estimated model of the system [18, 27]. The
correct term calculated in (10) is then used in
(13) to �nd the posteriori state estimate. Two
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critical variables in this process are the priori
and a posteriori output error estimate, de�ned
by (11) and (12) respectively [18, 25].

X̂k+1 = f(X̂k, Uk) (8)

Ẑk+1 = h(X̂k) (9)

The gain is computed using the priori, the poste-
riori measurement error, the smoothing bound-
ary layer widths ϕ , convergence rate γ and mea-
surement matrix Hk+1 as follows [15, 26]:

KSV SF
k+1 = Ĥ+

k+1diag[(|ezk+1/k
|Abs + γ|ezk/k

|Abs)
◦Sat(ϕ̄−1ezk+1/k

)][diag(ezk+1/k
)]−1

(10)

where

• ◦ represents "Schur" multiplication
element-by-element;

• + refers to the pseudo inverse of a matrix;

• Hk+1,j = hk+1,j(FX,i) is the derivative of h
with respect to the state vector Xk+1, we
note that h depends only of the robot pose
Rk+1 and the location of the ith landmark,
where i is the index of the observed land-
mark at time k and j is the index of an
individual landmark observation in hk+1,j .
FX,i is calculated in [16].

• ϕ̄−1 is a diagonal matrix constructed from
the smoothing boundary layer vector ϕ,
such that

ϕ̄−1 = [diag(ϕ)]−1 =


1
ϕ1

0 0

0
. . . 0

0 0 1
ϕMi

,
with Mi represents the number of measure-
ments.

• Sat(ϕ̄−1ezk+1
) represents the saturation

function [23, 28].

ezk+1/k
= Zk+1 − Ẑk+1/k (11)

ezk+1/k+1
= Zk+1 − Ẑk+1/k+1 (12)

The update of the state estimates can be calcu-
lated as follows

X̂k+1/k+1 = X̂k+1/k +KSV SF
k+1 êzk+1/k

(13)

SLAM is the problem of constructing a model of
the environment being traversed with on board
sensors, while at the same time maintaining
an estimate of the vehicle location within the
model [15, 20]. As an alternative approach,
there is a novel �lter, known as the Adaptive
smooth variable structure �lter (ASVSF). This
research focused on advancing the development
and implementation of the Adaptive SVSF-
VSLAM algorithm using matrix covariance to
evaluate the uncertainty of estimating with
optimal smoothing boundary layer vector.
In this section we investigate the ASVSF-

VSLAM proposed algorithm as a new approach.
We will show the nonlinear ASVSF which
is necessary to solve our Unmanned Ground
Vehicle SLAM problem.
The initial conditions used by the ASVSF-

VSLAM algorithm were the same as those
used by the EKF/SVSF-SLAM algorithm.
The Adaptive SVSF-VSLAM algorithm can be
described as follows:

• Initialization
The process estimation needs the initializa-
tion of the original pose X̂(0) of the coor-
dinate system and covariance matrix P (0).
The posteriori measurement error vector eZ0
can be is initialized arbitrary in the ASVSF-
VSLAM algorithm.
X̄0 = [R̄0, L̄

f,0
1 , ..., L̄f,0M0

]T and

eZ0/0 = [eZ1
0 ...e

ZM0
0 ]T

where X̂(0) = [0, 0, 0]T is the initial pose of
the UGV, P0 is the covariance matrix and
N0 is the number of initial feature.
Zk = [Z1, Z2, ..., ZM ]T be a set of system
measurements.

• Prediction
The prediction stage is a process, which
deals with vehicle motion based on in-
cremental dead reckoning estimates and
increases the uncertainty of the vehicle pose
estimate. The state vector is augmented
with a control input Uk. We consider the
following process for the ASVSF estimation
strategy, as applied to a nonlinear system.
The predicted state estimates Xk+1/k and
the predicted covariance matrix Pk+1/k are
�rst calculated as follows:

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 155



VOLUME: 2 | ISSUE: 3 | 2018 | September

1−Xk+1 = f(X̂k, Ûk) = f(Rk+1, L
f,k+1
i )

2 − Pk+1/k = ∇FXPk/k∇FXT +

∇FUQk∇FUT
where ∇FX and ∇FU be the Jacobian
matrices of f(.) with respect to Xk+1

evaluated at an elsewhere speci�ed point,
denoted by

∇FX =


J1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

, and

∇FU =


J2

0
...
0


where

J1 = [
∂f(.)

∂xr
;
∂f(.)

∂yr
;
∂f(.)

∂θr
]

=

 1 0 −vsin(θr)∆T
0 1 vcos(θr)∆T
0 0 1



J2 = [∂f(.)
∂v ; ∂f(.)

∂w ] =

 cos(θr)∆T 0
sin(θr)∆T 0

0 ∆T


Qk =

[
σ2
v 0

0 σ2
w

]
,

Rk =

 σ2
xi

0 0
0 y2

i 0
0 0 z2

i


• Data association and update

The feature already stored in the map
is observed by a vision sensor with the
measurement Zk+1.
3−For all features observations Zk+1,j .

4− Ẑk+1,i = h(X̂k+1) = h(R̂k+1, L
f,k+1
i )

5− if the the landmark j is seen before
(correspondence is founded).
The posteriori measurements error vector
êzk+1,i

∈ R3∗1 may be calculated by

6− êzk+1,i
= Zk+1,j − Ẑk+1,i

P ϕ̄k+1/k ∈ R6∗6 matrix that is extracted

from Pk+1/k is calculated by

7− P ϕ̄k+1/k =

[
PR PLf,k+1

i ,R

PR,Lf,k+1
i

PLf,k+1
i

]

where PR ∈ R3∗3, PLf,k+1
i ,R ∈ 03∗3,

PR,Lf,k+1
i

∈ 03∗3 and PLf,k+1
i

∈ R3∗3.

The array width of the boundary layer
ϕ̄optk+1 ∈ R2∗2 may be calculated by

8 − ϕ̄optk+1 = (∇hk+1P
ϕ̄
k+1/k(∇hk+1)T +

Rk)(∇hk+1

P ϕ̄k+1/k(∇hk+1)T )−1[diag(|êzk+1,i
|Abs +

γ|êzk,i
|Abs)]

where

∇hk+1 = [
∂h(X̂k+1/k)

∂XR
,
∂h(X̂k+1/k)

∂Lf,k+1
i

]

Use the ϕ̄opt to calculate SVSF gain
KASV SF
k+1 ∈ R6∗3

9 − KASV SF
k+1 =

(Hk+1,j)
+diag[(|ezk+1,i

|Abs +

γ|ezk,i
|Abs)◦Sat((ϕ̄optk+1)−1

êzk+1,i
)][diag(êzk+1,i

)]−1

(Hk+1,j)
+ = (FX,i)

T (hk+1,j)
+: used (21)

to calculate (Hk+1,j)
+ Note that the

matrix hk+1,j =
∂h(X̂k+1/k)

Xk+1
is the Jacobian

of with respect to Rk+1 and Lf,k+1
i .

The gain vector KASV SF
k+1 is used to for-

mulate a posteriori state estimate and
the update of the state estimate can be
calculated as follows
10− X̂k+1/k+1 = X̂k+1/k +KASV SF

k+1 êzk+1,i

Update Pk+1/k+1 ∈ R6∗6

11 − Pk+1/k+1 = (I6∗6 −
KASV SF
k+1 ∇hk+1)P ϕ̄k+1/k

(I6∗6 − KASV SF
k+1 ∇hk+1)T +

KASV SF
k+1 Rk(KASV SF

k+1 )T

The priori measurements error vector
ezk+1/k

∈ R3∗1 may be calculated by

12− ezk+1,i
= Zk+1,j − h(R̂k+1, L

f,k+1
i )

13−End if
14−End For
15 − X̂k+1/k+1 = X̂k+1/k, Pk+1/k+1 =
Pk+1/k

• Map Management

As the environment is explored, new
features are observed and should be added
to the stored map. In this case, the state
vector and the output error estimate matrix
are calculated from the new observation
[21, 23].
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4. Decentralized

Cooperative Visual

SLAM

Communication is a central issue for multiple
vehicle systems because it determines the pos-
sible modes of interaction among vehicles, as
well as their ability to successfully build a world
model [20]. It is exciting to know how the mul-

Fig. 2: Decentralized Cooperative SLAM architecture.

tiple UGVs can help each other to solve the
Cooperative vision SLAM problem. Figure 2
shows the architecture of the Decentralized Co-
operative SLAM (DC-SLAM). Each UGV when
shared features are observed in their positions
and uncertainties are updated using distributed
estimation. The proposed DC-SLAM will be
mainly based on the third form of interaction
which is via explicit communication. The most
restrictive constraint for explicit communica-
tion is the limited amount of data to commu-
nicate between UGVs. As a result, the col-
lective data to share should be selected care-
fully in order to maximize the gain with a min-
imum communication [20]. Assume we have N
UGVs (UGV1, UGV2, ..., UGVN ). At t = ti each
UGVi observes Mi feature feat

i(xi, yi, zi). Our
strategy is then to detect possible shared region
which is as follows (Fig. 3): For each UGVi
we calculate the mean (µi) and the standard
deviation (σi) of the observed features (feati).
Then, each set of observed features will be ap-
proximated by an ellipsoid (ξi) centered at (µi)
with axes (σi). Therefore UGVi and UGVj will

Fig. 3: ACI Decentralized Cooperative VSLAM strat-

egy.

cooperate (Cooperation(i, j) = 1) if and only
if: ξi ∩ ξj 6= ∅ [20]. The proposed DC-SLAM
strategy is de�ned as follows: assume we have
three UGVs(UGVi, UGVj and UGVk) observing
a number of features(Ni, Ni and Nk) respec-
tively. Each observed feature has a description
or an index. The Adaptive Covariance Inter-
section (ACI) approach is used to estimate the
position and covariance of shared features before
adding them to the global map [20, 24].

5. SIMULATION,

EXPERIMENTS AND

DISCUSSION

In order to verify the e�ciency of the Adap-
tive Cooperative SVSF-SLAM comparing with
the cooperative EKF-SLAM. Suppose that the
observation noise obeys the mixture Gauss dis-
tribution as σx = σy = 10−3 m, σθ =
10−4 rad. The convergence rate matrix γ =
diag(0.8, 0.8, 0.8) and the width of the
smoothing boundary layer vector used is ϕ =
[21; 21; 15]. The sampling rates used for each �l-
ter and sensors used in this study are as follows
fOdom = fCamera = fEKF = fSV SF =
fASV SF = 10 Hz.
We suppose that the observation noise obeys

the mixture Gauss distribution as [16] εxr,yr,θr ∼
0.5N(0, R1) + 0.5N(0, R2) and the motion noise
obeys the Gauss distribution as N(0, Qk),
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Fig. 4: Visual EKF-SLAM simulation results with

white centered Gaussian noise.

Qk =

[
0.02 0

0 0.01

]
The convergence rate matrix γ =
diag(0.8, 0.8, 0.8)

• Test 1 : with white centered Gaussian
noise

In the �rst experiment, we assume a white
centered Gaussian noise, for process and obser-
vation model where σv = 0.02 m/s, σw = 0.01
rad/s, σx = 0.1 m, σy = 0.1 m and σz = 0.1 m.

Qk =

(
0.02 0

0 0.02

)
,

Rk =

 0.01 0 0
0 0.01 0
0 0 0.01


Figures 4, 5, 6 and 7 present the results of a
comparison of the estimated position and er-
rors of the UGVs given by the EKF-VSLAM
and ASVSF-VSLAM. As can be seen from these
�gures when the process and observation noises
are centered white Gaussian noises the coopera-
tive EKF-VSLAM performs much better than
the cooperative ASVSF-VSLAM. The UGVs
poses errors are shown in Fig. 6. This �g-
ure con�rms the previous conclusion, and it is
clear that the cooperative EKF-VSLAM algo-
rithm requires zero-mean white noise, otherwise,
the errors pose decrease signi�cantly following
x, y and θ comparing to cooperative ASVSF-
VSLAM algorithm. Moreover, from the Fig. 7,

Fig. 5: Visual ASVSF-SLAM simulation results with

white centered Gaussian noise.

Fig. 6: Position errors of cooperative Visual SLAM with

white centered Gaussian noise

we can observe that at many loop closing are
detected when the UGVs observes themselves,
also when the UGVs observes features already
observed previously.

• Test 2 : with non-centered Gaussian

noise

In this experiment we assume a white noise
with bias, for process and observation model
where σv = 0.02 m/s, σw = 0.01 rad/s,
σx = 0.1 m, σy = σz = 0.1 m.

Qk =

(
0.02 0

0 0.02

)
,

Rk =

 0.01 0 0
0 0.01 0
0 0 0.01


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Fig. 7: RMSE Results with white centered Gaussian

noise.

Fig. 8: Visual EKF-SLAM simulation results with non-

centered Gaussian noise.

Figures 8 and 9 present the pose estimation us-
ing the cooperative EKF/ASVSF-VSLAM with
non-centered Gaussian noise of the UGVs. As
shown in Figures 8, 9, 10 and 11, the signi�cant
decrease of performance of the EKF-VSLAM es-
timator is observed when the process and ob-
servation noises are non-centered. In this case,
as shown in Figures 8 and 9, the values esti-
mated by the Cooperative ASVSF-VSLAM are
less accurate than the corrected values x, y and
θ. Decentralized Cooperative SLAM by ASVSF
shows much better navigation and mapping per-
formances than EKF-VSLAM and provides an
accurate position of the UGVs. From Fig. 10,
we can observe a loop closing is detected and the
UGVs observe a common feature. At this mo-
ment we observe a signi�cant improvement in
the accuracy of the Adaptive SVSF-VSLAM as
well as the EKF-VSLAM. The SVSF-SLAM pro-

Fig. 9: Visual ASVSF-SLAM simulation results with

non-centered Gaussian noise.

Fig. 10: Position errors of cooperative Visual SLAM

with non-centered Gaussian noise.

vides the best RMSE in comparison with to the
EKF-SLAM when we use non-centered Gaussian
noise as shown in Fig. 11.
In the results of the �rst experiment, in the

case of white centered Gaussian noise, the EKF-
SLAM algorithm gives the best results posi-
tion and is more accurate than the adaptive
SVSF-SLAM algorithm. This can be interpreted
as follows: the system and observation mod-
els are accurate besides, when the process and
observation noises are uncorrelated zero-mean
Gaussian with known covariance then the EKF
gives a good accuracy for position estimation.
It means that the EKF-SLAM algorithm be-
comes the optimal �lter. However, the adap-
tive SVSF-SLAM provide a more accurate esti-
mate than the EKF-SLAM when we use non-
centered Gaussian noise. These results clearly
validate the advantage of the adaptive SVSF-
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Fig. 11: RMSE Results with non-centered Gaussian

noise.

SLAM over the EKF-SLAM especially when the
system or observation models are not accurate
enough and the process and observation noises
are non-centered Gaussian noise.

6. Conclusion

The aim of this work is to come up with tools
that are capable of producing an accurate
automatic localization which could be used in
an accurate map management. UGVs are a
core tool in this study; we worked to improve
their autonomy by solving some of their tech-
nical problems. We made an investigation of
the UGVs localization, illustrated UGVs map
building, and implemented a simultaneous local-
ization and mapping solution using stereo vision
sensors by two algorithms, Cooperative EKF-
VSLAM and Cooperative ASVSF-VSLAM.
The proposed solution is extended to the
Decentralized Cooperative Vision SLAM. Our
proposal is a new solution for Adaptive Decen-
tralized Cooperative SVSF-SLAM for multiple
UGVs with stereo vision sensors. The adopted
approach is tested with di�erent scenarios.
After validation of the proposed algorithms
with simulation on three mobile robots Pioneer
3AT , satisfactory results (good accuracy and
robustness) were obtained with adaptive SVSF
Filter without any assumption on the process
and/or observation model accuracy.
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