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Abstract. The main object of this survey-
cum-expository article is to present an overview
of some recent developments involving the Rie-
mann Zeta function ζ(s), the Hurwitz (or gen-
eralized) Zeta function ζ(s, a), and the Hurwitz-
Lerch Zeta function Φ(z, s, a), which have their
roots in the works of the great eighteenth-century
Swiss mathematician, Leonhard Euler (1707�
1783) and the Russian mathematician, Chris-
tian Goldbach (1690�1764). We aim at con-
sidering the problems associated with the eval-
uations and representations of ζ(s) when s ∈
N \ {1}, N being the set of natural numbers,
with emphasis upon several interesting classes
of rapidly convergent series representations for
ζ(2n+1) (n ∈ N). Symbolic and numerical com-
putations using Mathematica (Version 4.0) for
Linux will also be provided for supporting their
computational usefulness.
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1. Introduction,
De�nitions and
Preliminaries

Throughout this lecture, we use the following
standard notations:

N := {1, 2, 3, · · · }, N0 := {0, 1, 2, · · · } = N∪{0}

and

Z− := {−1,−2,−3, · · · } = Z−0 \ {0}.

Also, as usual, Z denotes the set of integers, R
denotes the set of real numbers, R+ denotes the
set of positive numbers and C denotes the set of
complex numbers.
Some rather important and potentially useful
functions in Analytic Number Theory include
(for example) the Riemann Zeta function ζ(s)
and the Hurwitz (or generalized) Zeta function
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ζ(s, a), which are de�ned (for < (s) > 1) by

ζ (s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)
s

(< (s) > 1)

1

1− 21−s

∞∑
n=1

(−1)
n−1

ns

(< (s) > 0; s 6= 1)
(1)

and

ζ (s, a) :=

∞∑
n=0

1

(n+ a)
s ,
(
< (s) > 1; a ∈ C\Z−0

)
,

(2)
and

(
for < (s) 5 1; s 6= 1

)
by their meromor-

phic continuations (see, for details, the excellent
works by Titchmarsh [72] and Apostol [4] as well
as the monumental treatise by Whittaker and
Watson [75]; see also [1, Chapter 23] and [57,
Chapter 2]), so that (obviously)

ζ (s, 1) = ζ (s) = (2s − 1)
−1

ζ

(
s,

1

2

)
and

ζ (s, 2) = ζ (s)− 1

with, of course,

ζ(0, a) =
1

2
− a, ζ(0) = −1

2

and

ζ(−2n) = 0 (n ∈ N).

More generally, we have the following relation-
ships:

ζ (s) =
1

ms − 1

m−1∑
j=1

ζ

(
s,
j

m

)
, (m ∈ N \ {1})

(3)
and

ζ (s,ma) =
1

ms

m−1∑
j=0

ζ

(
s, a+

j

m

)
, (m ∈ N) .

(4)

Generally speaking, Mathematics appeals to
the intellect. In addition, however, great math-
ematics possesses a kind of perceptual quality
which endows it with a beauty comparable to
that of great art or great music. Much of the
work of the 18th century Swiss mathematician,
Leonhard Euler (1707�1783), belongs in this cat-
egory. Euler's work on ζ(s) began around 1730
with approximations to the value of ζ(2), con-
tinued with the evaluation of ζ(2n) (n ∈ N),
and resulted around 1749 in the discovery of the
celebrated functional equation for ζ(s) almost
110 years before the remarkably in�uential Ger-
man mathematician, Georg Friedrich Bernhard
Riemann (1826�1866).

A classical about three-century-old theorem
of Christian Goldbach (1690�1764) was stated
in a letter dated 1729 from Goldbach to Daniel
Bernoulli (1700�1782). Goldbach's Theorem
(or, equivalently, the Goldbach-Euler Theorem)
was revived and revisited recently as the follow-
ing problem in many publications such as (for
example)
[a] J. D. Shallit and K. Zikan, A theorem of
Goldbach, Amer. Math. Monthly 93 (1986),
402�403
and
[b] J. K. Haughlund, D. Tjaden and J. Groen-
eveld, Problem 38, Nieuw Arch. Wisk. (Ser. 5)
4 (2003), 95�96.

∑
ω∈S

1

ω − 1
= 1, (5)

where S denotes the set of all nontrivial integer
kth powers, that is,

S :=
{
nk : n, k ∈ N \ {1}

}
= {4, 8, 9, 16, 25, 27, 32, 36, · · · } .

What does Goldbach's Theorem
(5) have to do with the Riemann
Zeta function ζ(s) de�ned by (1)?

In order to answer this question, let T denote
the set of all positive integers that are not in S
other than 1, that is,

T := {τ : τ /∈ S and τ ∈ N \ {1}} .
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We then �nd that∑
ω∈S

1

ω − 1
=

∞∑
k=2

∑
τ∈T

(
τk − 1

)−1
=

∞∑
k=2

∑
τ∈T

∞∑
j=1

τ−jk

=

∞∑
k=2

∞∑
j=1

∑
τ∈T

(
τ j
)−k

=

∞∑
k=2

∞∑
n=2

1

nk

=

∞∑
k=2

(
ζ(k)− 1

)
,

since it is easily seen that

∞∑
k=2

∞∑
j=1

∑
τ∈T

(
τ j
)−k

=

∞∑
k=2

∞∑
j=1


(
2j
)−k

+
(
3j
)−k

+
(
5j
)−k

+
(
6j
)−k

+
(
7j
)−k

+
(
10j
)−k

+
(
11j
)−k

+
(
12j
)−k

+ · · ·



=

∞∑
k=2


(
2−k + 3−k + 5−k + 6−k + 7−k + · · ·

)
+
(
4−k + 9−k + 25−k + 36−k + · · ·

)
+
(
8−k + 27−k + 125−k + · · ·

)
+ · · ·


=

∞∑
k=2

∞∑
n=2

n−k =

∞∑
k=2

(
ζ(k)− 1

)
.

Thus, in terms of the Riemann Zeta function
ζ(s) de�ned by (1), Goldbach's Theorem (5) is
easily seen to assume the following elegant form:

∑
ω∈S

1

ω − 1
=

∞∑
k=2

(
ζ(k)− 1

)
= 1. (6)

Since ζ(s) is a decreasing function of its argu-
ment s for s = 2, we have

1 < ζ(n) 5 ζ(2) =
π2

6
< 2, (7)

the above alternative form (6) of Goldbach's
Theorem (5) can also be rewritten as follows:

∞∑
k=2

f
(
ζ(k)

)
= 1,

where

f(x) := x− [x] = The fractional part of x ∈ R.

As a matter of fact, it is fairly straightforward
to show also that

∞∑
k=2

(−1)k f
(
ζ(k)

)
=

1

2
,

∞∑
k=1

f
(
ζ(2k)

)
=

3

4
,

∞∑
k=1

f
(
ζ(2k + 1)

)
=

1

4
,

∞∑
k=1

f
(
ζ(4k)

)
=

1

8
(7− 2 cothπ) ,

and so on.

Several extensions and generalizations of
Goldbach's Theorem (5) have been investigated.
For example, we recall the following generaliza-
tions given in
[c] J. Choi and H. M. Srivastava, Series involving
the Zeta functions and a family of generalized
Goldbach-Euler series, Amer. Math. Monthly
121 (2014), 229�236.∑

ω∈Sp,0

1

ω − 1
=

1

p

[
ψ (1)− ψ

(
1− 1

p

)]
,

(p ∈ N \ {1})

and∑
ω∈Sp,1

1

ω − 1
= 1+

1

p

[
ψ

(
1

p

)
− ψ (1)

]
, (p ∈ N),

where the set Sp,0 is de�ned (for �xed p ∈ N \
{1}) by

Sp,0 :=
{

(pn)k : n ∈ N and k ∈ N \ {1}
}

and the set Sp,1 is de�ned (for �xed p ∈ N) by

Sp,1 :=
{

(pn+ 1)k : n ∈ N and k ∈ N \ {1}
}
,

and the Psi (or Digamma) function ψ(z) is de-
�ned (as usual) by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
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or

log Γ(z) =

∫ z

1

ψ(t) dt.

In fact, in terms of the Riemann zeta function
ζ(s) and Hurwitz (or generalized) zeta function
ζ(s, a), we have

∑
ω∈Sp,0

1

ω − 1
=

∞∑
k=2

ζ(k)

pk

=
1

p

[
ψ (1)− ψ

(
1− 1

p

)]
,

(p ∈ N \ {1}) and

∑
ω∈Sp,1

1

ω − 1
=

∞∑
k=2

1

pk
ζ

(
k, 1 +

1

p

)

= 1 +
1

p

[
ψ

(
1

p

)
− ψ (1)

]
(p ∈ N) or, equivalently,

∞∑
k=2

∞∑
n=1

1

(pn)k − 1
=

∞∑
k=2

∞∑
j=1

1

pkj
ζ(kj)

=
∑

ω∈Sp,0

1

ω − 1
+

∞∑
k=2

∞∑
j=2

1

pkj
ζ(kj)

(p ∈ N \ {1}), and

∞∑
k=2

∞∑
n=1

1

(pn+ 1)k − 1

=

∞∑
k=2

∞∑
j=1

1

pkj
ζ

(
kj, 1 +

1

p

)

=
∑

ω∈Sp,1

1

ω − 1
+

∞∑
k=2

∞∑
j=2

1

pkj
ζ

(
kj, 1 +

1

p

)
,

(p ∈ N), respectively. This last pair of the
Goldbach-Euler type sums poses a natural ques-
tion as the following open problem.
Open Problem. For each of the following dou-
ble sums:

∞∑
k=2

∞∑
j=1

1

pkj
ζ(kj)

∞∑
k=2

∞∑
j=1

1

pkj
ζ

(
kj, 1 +

1

p

)
,

�nd a closed-form evaluation or expression.

The name of Christian Goldbach (1690�1764)
is usually associated with a relatively more
popular conjecture �rst proposed in a letter
dated 1742 from Goldbach to Euler (known as
Goldbach's Conjecture), that is,

Every positive even integer greater than
2 is the sum of two prime numbers:

4 = 2 + 2 = 1 + 3;

6 = 3 + 3 = 1 + 5;

8 = 1 + 7 = 3 + 5; et cetera.

Just as the celebrated Riemann Hypothesis
dated 1859 that all nontrivial zeros of ζ(s) lie
on the critical line:

<(s) =
1

2
,

Goldbach's conjecture has not been proven as
yet. Interestingly, not too long ago in the year
2001, on the occasion of the publication of the
following (�very funny, tender, charming, and
irresistible�) novel:

Uncle Pedros and Goldbach's Conjecture:
A Novel of Mathematical Obsession (by
Apostolos Doxiadis), Faber and Faber, London,
2001.
the British publisher (Faber and Faber) had
o�ered a reward of one million U.K. Pounds
to anyone who can prove Goldbach's Conjecture.

Another result that has attracted fascinat-
ingly and tantalizingly large number of seem-
ingly independent solutions is the so-called
Basler Problem or Basel Problem:

ζ(2) :=

∞∑
k=1

1

k2
=
π2

6
, (8)

which was used above in (7). It was of vital
importance to Leonhard Euler (1707�1783) and
the Bernoulli brothers [Jakob Bernoulli (1654�
1705) and Johann Bernoulli (1667�1748)]. Re-
markably many (over a couple of dozen) essen-
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tially independent solutions the Basler Prob-
lem (8) have appeared in the mathematical lit-
erature ever since Euler �rst solved this problem
in the year 1736.

The city of Basel in Switzerland was one of
many free cities in Europe. By the 17th cen-
tury, it had become an important center of trade
and commerce. The University of Basel became
a noted institution in Europe, largely through
the fame of an extraordinary family, namely,
the Bernoullis. This family had come from
Antwerp to Basel. The founder of the Bernoulli
mathematical dynasty was Nicolaus (Nicholas)
Bernoulli who was a painter and Alderman of
Basel. He had 3 sons; two of his sons, Jakob
[often referred to as James] (1654�1705) and Jo-
hann [often referred to as John] (1667�1748), be-
came noted mathematicians. Both were pupils
of Gottfried Wilhelm von Leibniz (1646�1716)
with whom Johann Bernoulli carried on an ex-
tensive correspondence and with whose work
both Jacob Bernoulli and Johann Bernoulli be-
came familiar. Jacob Bernoulli was a profes-
sor at the University of Basel until his death
in 1705. Johann Bernoulli, who had been a
professor at the University of Groningen in the
(present-day) Netherlands, replaced his brother
at the University of Basel. Johann Bernoulli had
3 sons. Two of them, Nicholas II (1695�1726)
and Daniel (1700�1782), were mathematicians
who befriended Euler. They both went to the
Academy in St. Petersburg in 1725 and they
both had a high regard for their younger col-
league, Euler. After some e�ort, Daniel wrote
to Euler that he had secured for him a stipend
in the Academy. The appointment for Euler
was actually in the physiology section, but Euler
quickly drifted into the mathematics section. He
thus left Basel for St. Petersburg in 1727 and re-
mained there until 1741 when he was summoned
by Frederick the Great of Prussia to the Berlin
Academy. Euler was in Berlin until 1766 when
he was summoned back to the Academy in St.
Petersburg where he remained until his death in
1783. Euler carried on an extensive correspon-
dence with various mathematicians, especially
with Christian Goldbach (1690�1764). He also
wrote a series of letters on various subjects in
natural philosophy and addressed these letters

to a German princess. The quality of all his let-
ters re�ects Euler's pleasant personality.

In the above context, one other remarkable
classical result involving Riemann's Zeta func-
tion ζ(s) is the following elegant series represen-
tation for ζ (3):

ζ (3) = −4π2

7

∞∑
k=0

ζ (2k)

(2k + 1) (2k + 2) · 22k
, (9)

which was actually contained in Euler's 1772
paper entitled �Exercitationes Analyticae� (cf.,
e.g., Ayoub [5, pp. 1084�1085]). In fact, This
1772 result of Euler was rediscovered (among
others) by Ramaswami [44] (see also a paper
by Srivastava [47, p. 7, Equation (35)]) and
(more recently) by Ewell [19]. Moreover, just
as pointed out by (for example) Chen and Sri-
vastava [7, pp. 180-181], another series repre-
sentation:

ζ (3) =
5

2

∞∑
k=1

(−1)
k−1

k3
(

2k

k

) , (10)

which played a key rôle in the celebrated proof
(see, for details, [3]) of the irrationality of ζ (3)
by Roger Apéry (1916-1994), was derived in-
dependently by (among others) Hjortnaes [28],
Gosper [24], and Apéry [3]. Such elegant ex-
pressions as in (10) are known also for ζ(2) and
ζ(4):

ζ (2) = 3

∞∑
k=1

1

k2
(

2k

k

)
and

ζ (4) =
36

17

∞∑
k=1

1

k4
(

2k

k

) .
No such single-term sum expressions are known
for ζ(n) when n = 5.

It is easily observed that Euler's series in (9)
converges faster than the de�ning series for ζ (3),
but obviously not as fast as the series in (10). In
fact, the order estimates for their general terms
are given as follows:

ζ (3) = −4π2

7

∞∑
k=0

ζ (2k)

(2k + 1) (2k + 2) 22k
,
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[
O
(
k−2 · 2−2k

)
(k →∞)

]
and

ζ (3) =
5

2

∞∑
k=1

(−1)
k−1

k3
(

2k

k

) ,
[
O
(
k−

5
2 · 2−2k

)
(k →∞)

]
.

It is especially remarkable that Euler was al-
ready blind when he performed the breathtaking
calculations leading to his result (9) rather men-
tally.

Evaluations of such Zeta values as ζ (3), ζ (5),
et cetera are known to arise naturally in a wide
variety of applications such as those in Elasto-
statics, Quantum Field Theory, et cetera (see,
for example, Tricomi [73], Witten [77], and Nash
and O'Connor [39], [40]). On the other hand, in
the case of even integer arguments, we already
have the following computationally useful rela-
tionship:

ζ (2n) = (−1)
n−1 (2π)

2n

2 · (2n)!
B2n (11)

(n ∈ N0 := N ∪ {0}) with the well-tabulated
Bernoulli numbers de�ned by the following gen-
erating function:

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
(|z| < 2π) , (12)

as well as by the familiar recursion formula:

ζ (2n) =

(
n+

1

2

)−1 n−1∑
k=1

ζ (2k) ζ (2n− 2k) ,

(13)
(n ∈ N \ {1}). Our presentation in this lecture
consists of two major parts. First of all, moti-
vated essentially by a genuine need (for compu-
tational purposes) for expressing ζ (2n+ 1) as a
rapidly converging series for all n ∈ N, we pro-
pose to present a rather systematic investigation
of the various interesting families of rapidly con-
vergent series representations for the Riemann
ζ (2n+ 1) (n ∈ N). Relevant connections of the
results presented here with many other known
series representations for ζ (2n+ 1) (n ∈ N) are
also brie�y indicated. In fact, for two of the

many computationally useful special cases con-
sidered here, we observe that ζ (3) can be repre-
sented by means of series which converge much
more rapidly than that in Euler's celebrated for-
mula (9) as well as that in the series (10) which
was used recently by Apéry [3] in his proof of
the irrationality of ζ (3). Symbolic and numer-
ical computations using Mathematica (Version
4.0) for Linux show, among other things, that
only 50 terms of one of these series are capa-
ble of producing an accuracy of seven decimal
places. In the second part of this lecture, we con-
sider a variety of series and integrals associated
with the Hurwitz-Lerch Zeta function Φ(z, s, a)
as well as its various interesting extensions and
generalizations (see Section 6).

2. Series Representations
for ζ (2n+ 1) (n ∈ N)

The following simple consequence of the bino-
mial theorem and the de�nition (1):

∞∑
k=0

(s)k
k!

ζ (s+ k, a) tk = ζ (s, a− t) (|t| < |a|) ,

(14)
yields, for a = 1 and t = ±1/m, a useful the
series identity in the form:

∞∑
k=0

(s)2k
(2k)!

ζ (s+ 2k)

m2k

=



(2s − 1) ζ (s)− 2s−1

(m = 2)

1

2

(ms − 1) ζ (s)−ms −
m−2∑
j=2

ζ

(
s,
j

m

)
(m ∈ N \ {1, 2})

(15)

where (λ)ν denotes the general Pochhammer
symbol or the shifted factorial, since

(1)n = n! (n ∈ N0),
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which is de�ned, in terms of the familiar Gamma
function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=


1, (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1)

(ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 :=
1 and assumed tacitly that the Γ-quotient exists
(See, for details, [48] and [57]).

Making use of the familiar harmonic numbers
Hn given by

Hn :=

n∑
j=1

1

j
(n ∈ N) , (16)

the following set of series representations for
ζ (2n+ 1) (n ∈ N) were proven by Srivastava
[51] by appealing appropriately to the series
identity (15) in its special cases when m =
2, 3, 4, and 6, and also to many other properties
and characteristics of the Riemann Zeta function
such as the familiar functional equation for ζ(s)
(which was discovered by Euler around 1749,
that is, almost 110 years before Riemann):

ζ (s) = 2 · (2π)
s−1

sin

(
1

2
πs

)
Γ (1− s) ζ (1− s)

(17)
or, equivalently,

ζ (1− s) = 2 · (2π)
−s

cos

(
1

2
πs

)
Γ (s) ζ (s) ,

(18)
the familiar derivative formula:

ζ ′ (−2n) = lim
ε→0

{
ζ (−2n+ ε)− ζ(−2n)

ε

}
= lim
ε→0

{
ζ (−2n+ ε)

ε

}
=

(−1)
n

2 · (2π)
2n (2n)! ζ (2n+ 1) , (n ∈ N) ,

(19)

so that

ζ ′(−2) = −ζ(3)

4π2
, ζ ′(−4) =

3 ζ(5)

4π4
,

ζ ′(−6) =
45 ζ(7)

4π6
, ζ ′(−8) =

315 ζ(9)

4π8
, · · · .

with, of course,

ζ (0) = −1

2
; ζ (−2n) = 0 (n ∈ N) ;

ζ ′ (0) = −1

2
log (2π) , (20)

and each of the following limit relationships:

lim
s→−2n

{
sin
(
1
2πs

)
s+ 2n

}
= (−1)

n π

2
(n ∈ N)

(21)
and

lim
s→−2n

{
ζ (s+ 2k)

s+ 2n

}
=

(−1)
n−k

2 · (2π)
2(n−k) (2n− 2k)! ζ (2n− 2k + 1) .

(k = 1, . . . , n− 1; n ∈ N \ {1})

First Series Representation:

ζ (2n+ 1) = (−1)
n−1 (2π)

2n

22n+1 − 1

[
H2n − log π

(2n)!

+

n−1∑
k=1

(−1)
k

(2n− 2k)!

ζ (2k + 1)

π2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k)!

ζ (2k)

22k

 , (n ∈ N) (22)

Second Series Representation:

ζ (2n+ 1) = (−1)
n−1 2 · (2π)

2n

32n+1 − 1

[
H2n − log

(
2
3π
)

(2n)!

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k)!

ζ (2k)

32k

+

n−1∑
k=1

(−1)
k

(2n− 2k)!

ζ (2k + 1)(
2
3π
)2k

 , (n ∈ N) (23)

Third Series Representation:

ζ (2n+ 1) = (−1)
n−1 2 · (2π)

2n

24n+1 + 22n − 1

·



H2n − log
(
1
2π
)

(2n)!

+

n−1∑
k=1

(−1)
k

(2n− 2k)!

ζ (2k + 1)(
1
2π
)2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k)!

ζ (2k)

42k


, (n ∈ N)

(24)
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Fourth Series Representation:

ζ (2n+ 1) = (−1)
n−1 2 · (2π)

2n

32n (22n + 1) + 22n − 1

·



H2n − log
(
1
3π
)

(2n)!

+

n−1∑
k=1

(−1)
k

(2n− 2k)!

ζ (2k + 1)(
1
3π
)2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k)!

ζ (2k)

62k


, (n ∈ N)

(25)

Here, as well as elsewhere in this presentation,
an empty sum is understood (as usual) to be
zero.

The �rst series representation (22) is markedly
di�erent from each of the series representations
for ζ (2n+ 1), which were given earlier by Zhang
and Williams [79, p. 1590, Equation (54)] and
(subsequently) by Cvijovi¢ and Klinowski [14, p.
1265, Theorem A] (see also [80] and [81]). Since
ζ (2k) → 1 as k → ∞, the general term in the
series representation (22) has the following order
estimate:

O
(
2−2k · k−2n−1

)
(k →∞; n ∈ N) ,

whereas the general term in each of the afore-
cited earlier series representations has the order
estimate given below:

O
(
2−2k · k−2n

)
(k →∞; n ∈ N) .

In case we suitably combine (22) and (24),
we readily obtain the following series represen-
tation:

ζ (2n+ 1) = (−1)
n−1 2 · (2π)

2n

(22n − 1) (22n+1 − 1)
log 2

(2n)!
+

n−1∑
k=1

(−1)
k (

22k − 1
)

(2n− 2k)!

ζ (2k + 1)

π2k

−2

∞∑
k=1

(2k − 1)!
(
22k − 1

)
(2n+ 2k)!

ζ (2k)

24k

 ,
(26)

where n ∈ N. Moreover, in terms of the
Bernoulli numbers Bn and the Euler polynomi-
als En (x) de�ned by the generating functions

(12) and

2exz

ez + 1
=

∞∑
n=0

En (x)
zn

n!
(|z| < π) , (27)

respectively, it is known that (cf., e.g., [37, p.
29])

En (0) = (−1)
n
En (1) =

2
(
1− 2n+1

)
n+ 1

Bn+1, (n ∈ N) .

(28)
Thus, by combining (28) with the identity (11),
we �nd that

E2n−1 (0) =
4 · (−1)

n

(2π)
2n (2n− 1)!

(
22n − 1

)
ζ (2n) ,

(29)
where n ∈ N. If we apply the relationship (29),
the series representation (26) can immediately
be put in the following alternative form:

ζ (2n+ 1) = (−1)
n−1 2 · (2π)

2n

(22n − 1) (22n+1 − 1)

[
log 2

(2n)!

+

n−1∑
k=1

(−1)
k (

22k − 1
)

(2n− 2k)!

ζ (2k + 1)

π2k

+
1

2

∞∑
k=1

(−1)
k−1

(2n+ 2k)!

(π
2

)2k
E2k−1 (0)

]
,

(30)

where n ∈ N, which is a slightly modi�ed and
corrected version of a result proven, using a sig-
ni�cantly di�erent technique, by Tsumura [74, p.
383, Theorem B].

One other interesting combination of the se-
ries representations (22) and (24) leads us to
the following variant of Tsumura's result (26)
or (30):

ζ (2n+ 1) = (−1)
n−1 π2n

22n+1 − 1

[
H2n − log

(
1
4π
)

(2n)!

+

n−1∑
k=1

(−1)
k (

22k+1 − 1
)

(2n− 2k)!

ζ (2k + 1)

π2k

−4

∞∑
k=1

(2k − 1)!
(
22k−1 − 1

)
(2n+ 2k)!

ζ (2k)

24k

]
,

(31)

where n ∈ N, which is essentially the same as the
determinantal expression for ζ (2n+ 1) derived
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by Ewell [20, p. 1010, Corollary 3] by employing
an entirely di�erent technique from ours.

A number of other similar combinations of the
series representations (22) to (25) would yield
some interesting companions of Ewell's result
(31).

Next, by setting t = 1/m and di�erentiating
both sides with respect to s, we �nd from the fol-
lowing obvious consequence of the series identity
(14):

∞∑
k=0

(s)2k+1

(2k + 1)!
ζ (s+ 2k + 1, a) t2k+1

=
1

2
[ζ (s, a− t)− ζ (s, a+ t)] , (|t| < |a|) (32)

that

∞∑
k=0

(s)2k+1

(2k + 1)! m2k


ζ ′ (s+ 2k + 1, a)

+ζ (s+ 2k + 1, a)

2k∑
j=0

1

s+ j


=
m

2

∂

∂s

{
ζ

(
s, a− 1

m

)
− ζ

(
s, a+

1

m

)}
,

(33)

where m ∈ N \ {1}. In the particular case
when m = 2, (33) immediately yields

∞∑
k=0

(s)2k+1

(2k + 1)! 22k


ζ ′ (s+ 2k + 1, a)

+ζ (s+ 2k + 1, a)

2k∑
j=0

1

s+ j


= −

(
a− 1

2

)−s
log

(
a− 1

2

)
. (34)

Upon letting s→ −2n−1 (n ∈ N) in the further
special of this last identity (34) when a = 1,
Wilton [57, p. 92] deduced the following se-
ries representation for ζ (2n+ 1) (see also [27, p.
357, Entry (54.6.9)]):

ζ (2n+ 1) = (−1)
n−1

π2n

[
H2n+1 − log π

(2n+ 1)!

+

n−1∑
k=1

(−1)
k

(2n− 2k + 1)!

ζ (2k + 1)

π2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k + 1)!

ζ (2k)

22k

 , (n ∈ N) ,

(35)

which, in light of the elementary identity:

(2k)!

(2n+ 2k)!
=

(2k − 1)!

(2n+ 2k − 1)!

− 2n
(2k − 1)!

(2n+ 2k)!
, (n ∈ N) , (36)

would combine with the result (22) to yield the
following series representation:

ζ (2n+ 1) = (−1)
n (2π)

2n

n (22n+1 − 1)

·


n−1∑
k=1

(−1)
k−1

k

(2n− 2k)!

ζ (2k + 1)

π2k

+

∞∑
k=0

(2k)!

(2n+ 2k)!

ζ (2k)

22k

 , (n ∈ N) . (37)

This last series representation (37) is precisely
the aforementioned main result of Cvijovi¢ and
Klinowski [14, p. 1265, Theorem A]. As a mat-
ter of fact, in view of a known derivative for-
mula [51, p. 389, Equation (21)], the series rep-
resentation (37) is essentially the same as a re-
sult given earlier by Zhang and Williams [79,
p. 1590, Equation (54)] (see also Zhang and
Williams [79, p. 1591, Equation (57)] where
an obviously more complicated (asymptotic) ver-
sion of (37) was proven similarly).

In light of another elementary identity:

(2k)!

(2n+ 2k + 1)!
=

(2k − 1)!

(2n+ 2k)!

− (2n+ 1)
(2k − 1)!

(2n+ 2k + 1)!
, (38)

where n, k ∈ N, we can obtain the following yet
another series representation for ζ (2n+ 1) by
applying (22) and (35):

ζ (2n+ 1) = (−1)
n 2 · (2π)

2n

(2n− 1) 22n + 1

·


n−1∑
k=1

(−1)
k−1

k

(2n− 2k + 1)!

ζ (2k + 1)

π2k

+

∞∑
k=0

(2k)!

(2n+ 2k + 1)!

ζ (2k)

22k

 , (n ∈ N) ,

(39)
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which provides a signi�cantly simpler (andmuch
more rapidly convergent) version of the follow-
ing other main result of Cvijovi¢ and Klinowski
[14, p. 1265, Theorem B]:

ζ (2n+ 1) = (−1)
n 2 · (2π)

2n

(2n)!

∞∑
k=0

Ωn,k
ζ (2k)

22k
,

(40)
where n ∈ N and the coe�cients Ωn,k
(n ∈ N; k ∈ N0) are given explicitly as a �nite
sum of Bernoulli numbers [14, p. 1265, The-
orem B(i)] (see, for details, Srivastava [51, pp.
393-394]):

Ωn,k :=

2n∑
j=0

(
2n

j

)
B2n−j

(j + 2k + 1) (j + 1) · 2j
,

(41)
where n ∈ N; k ∈ N0.

3. Other Families of Series
Representations for
ζ (2n+ 1) (n ∈ N)

In this section, we start once again from the
identity (14) with (of course) a = 1, t = ±1/m,
and s replaced by s+ 1. Thus, by applying (15),
we �nd yet another class of series identities in-
cluding, for example,

∞∑
k=1

(s+ 1)2k
(2k)!

ζ (s+ 2k)

22k
= (2s − 2) ζ (s) (42)

and

∞∑
k=1

(s+ 1)2k
(2k)!

ζ (s+ 2k)

m2k

=
1

2m



m (ms − 3) ζ (s) +
(
ms+1 − 1

)
ζ (s+ 1)

−2ζ

(
s+ 1,

1

m

)
−
m−2∑
j=2

{
mζ

(
s,
j

m

)
+ ζ

(
s+ 1,

j

m

)}
 ,

(43)

where m ∈ N \ {1, 2} . In fact, it is the series
identity (42) which was �rst applied by Zhang
and Williams [79] (and, subsequently, by Cvi-
jovi¢ and Klinowski [14]) with a view to proving

two (only seemingly di�erent) versions of the se-
ries representation (37). Indeed, if we appeal to
(43) with m = 4, we can derive the following
much more rapidly convergent series representa-
tion for ζ (2n+ 1) (see [50, p. 9, Equation (41)]):

ζ (2n+ 1) = (−1)
n 2 · (2π)

2n

n (24n+1 + 22n − 1)

·



4n−1 − 1

(2n)!
B2n log 2− 22n−1 − 1

2 (2n− 1)!
ζ ′ (1− 2n)

− 42n−1

(2n− 1)!
ζ ′
(

1− 2n,
1

4

)
+

n−1∑
k=1

(−1)
k−1

k

(2n− 2k)!

ζ (2k + 1)(
1
2π
)2k

+

∞∑
k=0

(2k)!

(2n+ 2k)!

ζ (2k)

42k


,

(44)

where n ∈ N and (and in what follows) a prime
denotes the derivative of ζ (s) or ζ (s, a) with
respect to s.

By virtue of the identities (36) and (38), the
results (24) and (44) would lead us eventually
to the following additional series representations
for ζ (2n+ 1) (n ∈ N) (see [50, p. 10, Equations
(42) and (43)]):

ζ (2n+ 1) = (−1)
n−1
(π

2

)2n [H2n+1 − log
(
1
2π
)

(2n+ 1)!

+
2 (4n − 1)

(2n+ 2)!
B2n+2 log 2− 22n+1 − 1

(2n+ 1)!
ζ ′ (−2n− 1)

− 24n+3

(2n+ 1)!
ζ ′
(
−2n− 1,

1

4

)
+

n−1∑
k=1

(−1)
k

(2n− 2k + 1)!

ζ (2k + 1)(
1
2π
)2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k + 1)!

ζ (2k)

42k


(45)
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where n ∈ N, and

ζ (2n+ 1) = (−1)
n 4 · (2π)

2n

n · 42n+1 − 22n + 1

·



22n+1 − 1

2 · (2n)!
ζ ′ (−2n− 1)

+
42n+1

(2n)!
ζ ′
(
−2n− 1,

1

4

)
− (2n+ 1) (4n − 1)

(2n+ 2)!
B2n+2 log 2

+

n−1∑
k=1

(−1)
k−1

k

(2n− 2k + 1)!

ζ (2k + 1)(
1
2π
)2k

+

∞∑
k=0

(2k)!

(2n+ 2k + 1)!

ζ (2k)

42k



, (46)

where n ∈ N. Explicit expressions for the deriva-
tives ζ ′ (−2n± 1) and ζ ′

(
−2n± 1, 14

)
, occur-

ring in the series representations (44), (45), and
(46), can be found and substituted into these re-
sults in order to represent ζ (2n+ 1) in terms of
Bernoulli numbers and polynomials and various
rapidly convergent series of the ζ-functions (see,
for details, the work by Srivastava [50, Section
3]).

Out of the four seemingly analogous results
(24), (44), (45), and (46), the in�nite series
in (45) would obviously converge most rapidly,
with its general term having the order estimate:

O
(
k−2n−2 · 4−2k

)
(k →∞; n ∈ N) .

From the work by Srivastava and Tsumura [69],
we recall the following three new members of the
class of the series representations (24) and (45):

ζ (2n+ 1) = (−1)
n−1
(

2π

3

)2n

·



H2n+1 − log
(
2
3π
)

(2n+ 1)!

+
(−1)

n−1

√
3(2π)

2n+1 ζ

(
2n + 2,

1

3

)
+

(
32n+2 − 1

)
π

2
√

3 (2n+ 2)!
B2n+2

+

n−1∑
k=1

(−1)
k

(2n− 2k + 1)!

ζ (2k + 1)(
2
3π
)2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k + 1)!

ζ (2k)

32k



(47)

ζ (2n+ 1) = (−1)
n−1

(π
2

)2n [H2n+1 − log
(
1
2π
)

(2n+ 1)!

+
22n

(
22n+2 − 1

)
π

(2n+ 2)!
B2n+2+

+
22n

(
22n+2 − 1

)
π

(2n+ 2)!
B2n+2

+
(−1)

n−1

2 · (2π)
2n+1 ζ

(
2n+ 2,

1

4

)

+

n−1∑
k=1

(−1)
k

(2n− 2k + 1)!

ζ (2k + 1)(
1
2π
)2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k + 1)!

ζ (2k)

42k



,

(48)

and

ζ (2n+ 1) = (−1)
n−1
(π

3

)2n

·



H2n+1 − log
(
1
3π
)

(2n+ 1)!

+
22n

(
32n+2 − 1

)
π

√
3 (2n+ 2)!

B2n+2

+
(−1)

n−1

2
√

3(2π)
2n+1

 ζ

(
2n+ 2,

1

3

)
+ζ

(
2n+ 2,

1

6

)


+

n−1∑
k=1

(−1)
k

(2n− 2k + 1)!

ζ (2k + 1)(
1
3π
)2k

+2

∞∑
k=1

(2k − 1)!

(2n+ 2k + 1)!

ζ (2k)

62k



,

(49)

where n ∈ N. The general terms of the in�nite
series occurring in these three members (47),
(48), and (49) have the order estimates:

O
(
k−2n−2 ·m−2k

)
, (k →∞;n ∈ N;m = 3, 4, 6) ,

(50)
which exhibit the fact that each of these last
three series representations (47), (48), and (49)
converges more rapidly than Wilton's result (35)
and two of them [cf. Equations (48) and (49)]
at least as rapidly as Srivastava's result (45).

We next recall that, in their aforementioned
work on the Ray-Singer torsion and topolog-
ical �eld theories, Nash and O'Connor ( [39]

c© 2019 Journal of Advanced Engineering and Computation (JAEC) 339



VOLUME: 3 | ISSUE: 1 | 2019 | March

and [40]) obtained a number of remarkable in-
tegral expressions for ζ (3), including (for exam-
ple) the following result [26, p. 1489 et seq.]:

ζ (3) =
2π2

7
log 2− 8

7

∫ π/2

0

z2 cot z dz. (51)

In fact, in view of the following series expansion
[17, p. 51, Equation 1.20(3)]:

z cot z = −2

∞∑
k=0

ζ (2k)
( z
π

)2k
, (|z| < π) , (52)

the result (51) equivalent to the series represen-
tation ( cf. the work by D�abrowski [16, p. 202];
see also the paper by Chen and Srivastava [7, p.
191, Equation (60)]):

ζ (3) =
2π2

7

(
log 2 +

∞∑
k=0

ζ (2k)

(k + 1) · 22k

)
. (53)

Moreover, if we integrate by parts, we easily �nd
that∫ π/2

0

z2 cot z dz = −2

∫ π/2

0

z log sin z dz,

(54)
so that the result (51) is equivalent also to the
following integral representation:

ζ (3) =
2π2

7
log 2 +

16

7

∫ π/2

0

z log sin z dz, (55)

which was proven in the aforementioned 1772
paper by Euler (cf., e.g., [5, p. 1084]).

Furthermore, since

i cot iz = coth z =
2

e2z − 1
+ 1,

(
i :=
√
−1
)
,

(56)
by replacing z in the known expansion (52) by
1
2 iπz, it is easily seen that (cf., e.g., [20, p. 25];
see also [17, p. 51, Equation 1.20(1)])

πz

eπz − 1
+
πz

2
=

∞∑
k=0

(−1)
k+1

ζ (2k)

22k−1
z2k, (|z| < 2) .

(57)
Upon setting z = it in (57), multiplying both
sides by tm−1 (m ∈ N), and then integrating
the resulting equation from t = 0 to t = τ

(0 < τ < 2), Srivastava [37] derived the follow-
ing series representations for ζ (2n+ 1) (see also
the work by Srivastava et al. [62]):

ζ (2n+ 1) = (−1)
n−1 (2π)

2n

(2n)! (22n+1 − 1)

·



log 2

+

n−1∑
j=1

(−1)
j

(
2n

2j

)
(2j)!

(
22j − 1

)
(2π)

2j
ζ (2j + 1)

+

∞∑
k=0

ζ (2k)

(k + n) · 22k


,

(58)

and

ζ (2n+ 1) = (−1)
n−1 (2π)

2n

(2n+ 1)! (22n − 1)

·



log 2

+

n−1∑
j=1

(−1)
j

(
2n+ 1

2j

)

·
(2j)!

(
22j − 1

)
(2π)

2j
ζ (2j + 1)

+

∞∑
k=0

ζ (2k)(
k + n+ 1

2

)
· 22k


, (59)

where n ∈ N. Upon setting n = 1, (59) immedi-
ately reduces to the following series representa-
tion for ζ (3):

ζ (3) =
2π2

9

(
log 2 + 2

∞∑
k=0

ζ (2k)

(2k + 3) · 22k

)
,

(60)
which was proven independently by (among oth-
ers) Glasser [23, p. 446, Equation (12)], Zhang
and Williams [79, p. 1585, Equation (25)], and
D�abrowski [16, p. 206] (see also the work by
Chen and Srivastava [7, p. 183, Equation (27)]).
Furthermore, a special case of (58) when n = 1
yields (cf. D�abrowski [16, p. 202]; see also Chen
and Srivastava [7, 5, p. 191, Equation (60)])

ζ (3) =
2π2

7

(
log 2 +

∞∑
k=0

ζ (2k)

(k + 1) · 22k

)
. (61)

In fact, in view of the following familiar sum:

∞∑
k=0

ζ (2k)

(2k + 1) · 22k
= −1

2
log 2, (62)
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Euler's formula (9), that is,

ζ (3) = −4π2

7

∞∑
k=0

ζ (2k)

(2k + 1) (2k + 2) · 22k
,

is indeed a rather simple consequence of (61).

In passing, we �nd it worthwhile to remark
that an integral representation for ζ (2n+ 1),
which is easily seen to be equivalent to the series
representation (58), was given by D�abrowski [16,
p. 203, Equation (16)], who [16, p. 206] men-
tioned the existence of (but did not fully state)
the series representation (59) as well. The series
representation (58) was derived also in a paper
by Borwein et al. (cf. [6, p. 269, Equation (57)]).

If we suitably combine the series occurring
in (53), (60), and (62), it is not di�cult to
deduce several other series representations for
ζ (3), which are analogous to Euler's formula (9),
that is,

ζ (3) = −4π2

7

∞∑
k=0

ζ (2k)

(2k + 1) (2k + 2) · 22k
.

More generally, since

λk2 + µk + ν

(2k + 2n− 1) (2k + 2n) (2k + 2n+ 1)

=
A

2k + 2n− 1
+

B
2k + 2n

+
C

2k + 2n+ 1
,

(63)

where, for convenience,

A = An (λ, µ, ν)

:=
1

2

[
λn2 − (λ+ µ)n+

1

4
(λ+ 2µ+ 4ν)

]
,

(64)

B = Bn (λ, µ, ν) := −
(
λn2 − µn+ ν

)
, (65)

and

C = Cn (λ, µ, ν)

:=
1

2

[
λn2 + (λ− µ)n+

1

4
(λ− 2µ+ 4ν)

]
,

(66)

by applying (58), (59), and another result
(proven by Srivastava [52, p. 341, Equation

(58)]):

n∑
j=1

(−1)
j−1

(
2n+ 1

2j

)
(2j)!

(
22j − 1

)
(2π)

2j
ζ (2j + 1)

= log 2 +

∞∑
k=0

ζ (2k)(
k + n+ 1

2

)
· 22k

, (n ∈ N0) ,

(67)

with n replaced by n − 1, Srivastava [52] de-
rived the following uni�cation of a large num-
ber of known (or new) series representations for
ζ (2n+ 1) (n ∈ N), including (for example) Eu-
ler's formula (9):

ζ (2n+ 1)

=
(−1)

n−1
(2π)

2n

(2n)! {(22n+1 − 1)B + (2n+ 1) (22n − 1) C}

·



1

4
λ log 2 +

n−1∑
j=1

(−1)
j

(
2n− 1

2j − 2

)

·

 2j (2j − 1)A

+ [λ (4n− 1)− 2µ]nj + λn

(
n+

1

2

)
·
(2j − 2)!

(
22j − 1

)
(2π)

2j
ζ (2j + 1)

+

∞∑
k=0

E(k)


(68)

where

E(k) :=

(
λk2 + µk + ν

)
ζ (2k)

(2k + 2n− 1) (k + n) (2k + 2n+ 1) · 22k

and n ∈ N; λ, µ, ν ∈ C and A, B, and C are
given by (64), (65), and (66), respectively.

Numerous other interesting series representa-
tions for ζ (2n+ 1), which are analogous to (58)
and (59), were also given by Srivastava et al. [62].

4. Computationally Useful
Deductions and
Consequences

In this section, we suitably specialize the pa-
rameter λ, µ, and ν in (68) and then apply a
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rather elaborate scheme. We thus eventually ar-
rive at the following remarkably rapidly conver-
gent series representation for ζ (2n+ 1) (n ∈ N),
which was derived by Srivastava [52, pp. 348�
349, Equation (3.50)]):

ζ (2n+ 1) = (−1)
n−1 (2π)

2n

(2n)!∆n

·



n−1∑
j=1

(−1)
j ·

(2j)!
(
22j − 1

)
(2π)

2j
ζ (2j + 1)

·



{
(2n− 3) 22n+2 − 2n

}

·



(
2n− 1

2j

)
−

(
2n+ 2

2j

)

+6n

(
2n− 1

2j − 2

)


−
(
22n+3 − 1

)

·



(
2n

2j

)
−

(
2n+ 3

2j

)

+3

(
2n+ 1

2j − 1

)



+12

∞∑
k=0

(ξnk + ηn) ζ (2k)

E (k)



(69)

where n ∈ N,

E (k) := (2k + 2n− 1) (2k + 2n)

· (2k + 2n+ 1) (2k + 2n+ 2)

· (2k + 2n+ 3) · 22k

and, for convenience,

∆n :=
(
22n+3 − 1

)
·
{

1

3
(2n+ 1)

(
2n2 − 4n+ 3

) (
22n − 1

)
− 22n+1 + 1

}
−
{

(2n− 3) 22n+2 − 2n
}

·
{

22n+2 + n (2n− 3)
(
22n − 1

)
− 1
}
, (70)

ξn := 2
{

(2n− 5) 22n+2 − 2n+ 1
}
, (71)

and

ηn :=
(
4n2 − 4n− 7

)
22n+2 − (2n+ 1)

2
. (72)

In its special case when n = 1, (69) yields the
following (rather curious) series representation:

ζ (3) = −6π2

23

∞∑
k=0

(98k + 121) ζ (2k)

(2k + 1) (2k + 2) (2k + 3) (2k + 4) (2k + 5) · 22k
(73)

[
O
(
k−4 · 2−2k

)
(k →∞)

]
where the series obviously converges much more
rapidly than that in each of the celebrated results
(9) and (10), that is,

ζ (3) = −4π2

7

∞∑
k=0

ζ (2k)

(2k + 1) (2k + 2) · 22k

[
O
(
k−2 · 2−2k

)
(k →∞)

]
and

ζ (3) =
5

2

∞∑
k=1

(−1)
k−1

k3
(

2k

k

)
[
O
(
k−

5
2 · 2−2k

)
(k →∞)

]
.

An interesting companion of (73) in the follow-
ing form:

ζ (3) = − 120

1573
π2
∞∑
k=0

8576k2 + 24286k + 17283

E(k)

ζ (2k)

22k
(74)

[
O
(
k−5 · 2−2k

)
(k →∞)

]
,

where

E(k) := (2k + 1) (2k + 2)

· (2k + 3) (2k + 4)

· (2k + 5) (2k + 6) (2k + 7) ,

was deduced by Srivastava and Tsumura [71],
who indeed presented an inductive construc-
tion of several general series representations for
ζ (2n+ 1) (n ∈ N) (see also [70]).
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5. Numerical Veri�cations
and Symbolic
Computations

Based Upon Mathematica

(Version 4.0)

In this section, we �rst summarize the results of
numerical veri�cations and symbolic computa-
tions with the series in (73) by using Mathemat-
ica (Version 4.0) for Linux:

In[1]:= (98k + 121)Zeta[2k] /E1(k),

where

E1(k) :=

(
(2k + 1) (2k + 2) (2k + 3)

· (2k + 4) (2k + 5) 2q (2k)

)

Out[1] =
(121 + 98k)Zeta [2k]

E2(k)
,

where

E2(k) :=22k (1 + 2k) (2 + 2k) (3 + 2k)

· (4 + 2k) (5 + 2k)

In[2] := Sum[%, {k, 1, In�nity}] // Simplify

Out[2] =
121

240
− 23 Zeta[3]

6Pi2

In[3] := N[%]

Out[3] = 0.0372903

In[4] := Sum[N [%1] // Evaluate, {k, 1, 50}]

Out[4] = 0.0372903

In[5] := N Sum[%1 // Evaluate, {k, 1, In�nity}]

Out[5] = 0.0372903

Since

ζ (0) = −1

2
,

Out[2] evidently validates the series representa-
tion (73) symbolically. Furthermore, our numer-
ical computations in Out[3], Out[4], and Out[5],
together, exhibit the fact that only 50 terms
(k = 1 to k = 50) of the series in (73) can pro-
duce an accuracy of as many as seven decimal
places.

Our symbolic computations and numerical
veri�cations with the series in (74) using Math-
ematica (Version 4.0) for Linux lead us to the
following table:

Number of Terms Precision of Computation
4 6
10 11
20 18
50 38
98 69

In fact, since the general term of the series in
(74) has the following order estimate:

O
(
2−2k · k−5

)
(k −→∞) ,

for getting p exact digits, we must have

2−2k · k−5 < 10−p.

Upon solving this inequality symbolically, we
�nd that

k ∼=
5

log 4
ProductLog

(
10p/5 log 4

5

)
,

where the function ProductLog (also known as
Lambert's function) is the solution of the equa-
tion:

xex = a.

Some relevant details about the symbolic com-
putations and numerical veri�cations with the
series in (74) using Mathematica (Version 4.0)
for Linux are being summarized below.

In [1] := expr

=
(
8576kq2 + 24286k + 17283

)
Zeta[2k]/E1(k),

where

E1(k) :=

(
(2k + 1) (2k + 2) (2k + 3) (2k + 4)

· (2k + 5) (2k + 6) (2k + 7) 2q (2k)

)
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Out [1]

=
(
17283 + 24286k + 8576k2

)
Zeta[2k]/E2(k),

where

E2(k) :=22k (1 + 2k) (2 + 2k) (3 + 2k)

· (4 + 2k) (5 + 2k) (6 + 2k) (7 + 2k)

In [2] := Sum[expr, {k, 0, in�nity}] // Simplify

Out [2] = − 1573

120Pi2
Zeta[3]

In [3] :=N
[
−1573/

(
120Piq2

)
Zeta[3], 50

]
−Sum[expr, {k, 0, 50}]

Out [3] = 4.00751120011 · 10−38

In [4] :=N
[
−1573/

(
120Piq2

)
Zeta[3], 100

]
−Sum [expr, {k, 0, 50}]

Out [4] = 4.0075112001 <skip> 3481 · 10−38

Thus, clearly, the result does not change
appreciably when we increase the precision of
computation of the symbolic result from 50 to
100. This is expected, because of the following
numerical computation of the last term for
k = 50:

In [5] := N [expr /.k → 50, 50]

Out [5] = 1.36085303749223768614438874545515

14233575702860179 · 10−37

6. The Hurwitz-Lerch
Zeta Function Φ(z, s,a) :
Extensions and
Generalizations

The potentially and computationally useful fore-
going developments (which we have attempted

to present here in a rather concise form) have
essentially motivated a large number of further
investigations on the subject, not only involving
the Riemann Zeta function ζ(s) and the Hur-
witz (or generalized) Zeta function ζ(s, a) (and
their such relatives as the multiple Zeta func-
tions and the multiple Gamma functions), but
indeed also the substantially general Hurwitz-
Lerch Zeta function Φ(z, s, a) de�ned by (cf.,
e.g., [17, p. 27. Eq. 1.11 (1)]; see also [57, p.
121, et seq.])

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s
(75)

(
a ∈ C \ Z−0 ; s ∈ C when |z| < 1;

<(s) > 1 when |z| = 1) .

Just as in the cases of the Riemann Zeta func-
tion ζ(s) and the Hurwitz (or generalized) Zeta
function ζ(s, a), the Hurwitz-Lerch Zeta func-
tion Φ(z, s, a) can be continued meromorphically
to the whole complex s-plane, except for a sim-
ple pole at s = 1 with its residue 1. It is also
known that [17, p. 27, Equation 1.11 (3)]

Φ(z, s, a) =
1

Γ(s)

∫ ∞
0

ts−1 e−at

1− ze−t
dt

=
1

Γ(s)

∫ ∞
0

ts−1 e−(a−1)t

et − z
dt (76)

(<(a) > 0; <(s) > 0 when |z| 5 1 (z 6= 1);

<(s) > 1 when z = 1) .

The Hurwitz-Lerch Zeta function Φ(z, s, a) de-
�ned by (75) contains, as its special cases, not
only the Riemann Zeta function ζ(s) and the
Hurwitz (or generalized) Zeta function ζ(s, a)
[cf. Equations (1) and (2)]:

ζ(s) = Φ(1, s, 1) and ζ(s, a) = Φ(1, s, a) (77)

and the Lerch Zeta function `s(ξ) de�ned by
(see, for details, [17, Chapter I] and [57, Chapter
2])

`s(ξ) :=

∞∑
n=1

e2nπiξ

ns
= e2πiξ Φ

(
e2πiξ, s, 1

)
(78)

(ξ ∈ R; <(s) > 1) ,
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but also such other important functions of An-
alytic Function Theory as the Polylogarithmic
function (or de Jonquière's function) Lis(z):

Lis(z) :=

∞∑
n=1

zn

ns
= z Φ(z, s, 1) (79)

(s ∈ Cwhen |z| < 1;<(s) > 1when |z| = 1)

and the Lipschitz-Lerch Zeta function (cf. [57, p.
122, Eq. 2.5 (11)]):

φ(ξ, a, s) : =

∞∑
n=0

e2nπiξ

(n+ a)s

= Φ
(
e2πiξ, s, a

)
=: L (ξ, s, a) (80)

(
a ∈ C \ Z−0 ;<(s) > 0when ξ ∈ R \ Z;

<(s) > 1when ξ ∈ Z) ,

which was �rst studied by Rudolf Lipschitz
(1832-1903) and Matyá² Lerch (1860-1922) in
connection with Dirichlet's famous theorem on
primes in arithmetic progressions. For details,
the interested reader should be referred, in con-
nection with some of these developments, to the
recent works including (among others) [2], [8]
to [13], [22], [30], [31] and [36].

Yen et al. [78, p. 100, Theorem] derived
the following sum-integral representation for the
Hurwitz (or generalized) Zeta function ζ(s, a)
de�ned by (2):

ζ(s, a) =
1

Γ(s)

k−1∑
j=0

∫ ∞
0

ts−1 e−(a+j)t

1− e−kt
dt (81)

(
k ∈ N; <(s) > 1; <(a) > 0

)
,

which, for k = 2, was given earlier by Nishimoto
et al. [41, p. 94, Theorem 4]. A straightforward
generalization of the sum-integral representation
(81) was given subsequently by Lin and Srivas-
tava [35, p. 727, Eq. (7)] in the form:

Φ(z, s, a) =
1

Γ(s)

k−1∑
j=0

zj
∫ ∞
0

ts−1 e−(a+j)t

1− zke−kt
dt

(82)

(k ∈ N; <(a) > 0; <(s) > 0when |z| 5 1 (z 6= 1);

<(s) > 1 when z = 1) .

Motivated essentially by the sum-integral rep-
resentations (81) and (82), a generalization of
the Hurwitz-Lerch Zeta function Φ(z, s, a) was
introduced and investigated by Lin and Srivas-
tava [35] in the following form [35, p. 727, Eq.
(8)]:

Φ(ρ,σ)
µ,ν (z, s, a) :=

∞∑
n=0

(µ)ρn
(ν)σn

zn

(n+ a)s
(83)

(
µ ∈ C; a, ν ∈ C \ Z−0 ; ρ, σ ∈ R+; ρ < σ

when s, z ∈ C; ρ = σ and s ∈ C
when |z| < δ := ρ−ρ σσ; ρ = σ

and <(s− µ+ ν) > 1 when |z| = δ) ,

where (λ)ν denotes the Pochhammer symbol de-
�ned in conjunction with (14) and (15). Clearly,
we �nd from the de�nition (83) that

Φ(σ,σ)
ν,ν (z, s, a) = Φ(0,0)

µ,ν (z, s, a)

= Φ(z, s, a) (84)

and

Φ
(1,1)
µ,1 (z, s, a) = Φ∗µ(z, s, a)

:=

∞∑
n=0

(µ)n
n!

zn

(n+ a)s
(85)

(
µ ∈ C; a ∈ C \ Z−0 ; s ∈ C when |z| < 1;

<(s− µ) > 1 when |z| = 1) ,

where, as already noted by Lin and Srivas-
tava [35], Φ∗µ(z, s, a) is a generalization of
the Hurwitz-Lerch Zeta function considered by
Goyal and Laddha [25, p. 100, Equation (4)].
For further results involving these classes of gen-
eralized Hurwitz-Lerch Zeta functions, see the
recent works by Garg et al. [22] and Lin et al.
[36].

A generalization of the above-de�ned
Hurwitz-Lerch Zeta functions Φ(z, s, a) and
Φ∗µ(z, s, a) was studied by Garg et al. [21] in the
following form [21, p. 313, Eq. (10)]:

Φλ,µ;ν(z, s, a) :=

∞∑
n=0

(λ)n(µ)n
(ν)n · n!

zn

(n+ a)s
(86)
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(
λ, µ ∈ C; ν, a ∈ C \ Z−0 ; s ∈ C when |z| < 1;

<(s+ ν − λ− µ) > 1 when |z| = 1) .

By comparing the de�nitions (83) and (85), it is
easily observed that the function Φλ,µ;ν(z, s, a)
studied by Garg et al. [21] does not provide

a generalization of the function Φ
(ρ,σ)
µ,ν (z, s, a)

which was introduced earlier by Lin and Sri-
vastava [35]. Indeed, for λ = 1, the function
Φλ,µ;ν(z, s, a) coincides with a special case of the

function Φ
(ρ,σ)
µ,ν (z, s, a) when ρ = σ = 1.

For the Riemann-Liouville fractional deriva-
tive operator Dµz de�ned by (see, for example,
[18, p. 181], [45] and [33, p. 70 et seq.])

Dµz {f (z)} :=



1

Γ (−µ)

z

∫
0

(z − t)−µ−1 f (t) dt

(< (µ) < 0)

dm

dzm
{Dµ−mz {f (z)}}

(m− 1 5 < (µ) < m (m ∈ N)),

.

(87)
it is known that

Dµz
{
zλ
}

=
Γ (λ+ 1)

Γ (λ− µ+ 1)
zλ−µ

(
< (λ) > −1

)
,

(88)
which, in view of the de�nition (83), yields
the following fractional derivative formula for
the generalized Hurwitz-Lerch Zeta function

Φ
(ρ,σ)
µ,ν (z, s, a) with ρ = σ [35, p. 730, Eq. (24)]:

Dµ−νz

{
zµ−1 Φ (zσ, s, a)

}
=

Γ (µ)

Γ (ν)
zν−1 Φ(σ,σ)

µ,ν (zσ, s, a) (89)

(
< (µ) > 0; σ ∈ R+

)
.

In particular, when ν = σ = 1, the fractional
derivative formula (89) would reduce at once to
the following form:

Φ∗µ (z, s, a) =
1

Γ (µ)
Dµ−1z

{
zµ−1 Φ (z, s, a)

}
,

(90)(
<(µ) > 0

)
which (as already remarked by Lin and Sri-
vastava [35, p. 730]) exhibits the interest-
ing (and useful) fact that Φ∗µ(z, s, a) is es-
sentially a Riemann-Liouville fractional deriva-
tive of the classical Hurwitz-Lerch function

Φ (z, s, a). Moreover, it is easily deduced from
the fractional derivative formula (88) that

Φλ,µ;ν(z, s, a)

=
Γ(ν)

Γ(λ)
z1−λ Dλ−νz

{
zλ−1 Φ∗µ(z, s, a)

}
=

Γ(ν)

Γ(λ)Γ(µ)
z1−λ

· Dλ−νz

{
zλ−1 Dµ−1z

{
zµ−1 Φµ(z, s, a)

}}
,

(91)

which exhibits the hitherto unnoticed fact that
the function Φλ,µ;ν(z, s, a) studied by Garg et al.
[21] is essentially a consequence of the classical
Hurwitz-Lerch Zeta function Φ(z, s, a) when we
apply the Riemann-Liouville fractional deriva-
tive operator Dµz two times as indicated above
(see also [67]). Many other explicit representa-

tions for Φ∗µ(z, s, a) and Φ
(ρ,σ)
µ,ν (z, s, a), including

a potentially useful Eulerian integral representa-
tion of the �rst kind [35, p. 731, Eq. (28)], were
proven by Lin and Srivastava [35].

A multiple (or, simply, n-dimentional)
Hurwitz-Lerch Zeta function Φn(z, s, a) was
studied recently by Choi et al. [9, p. 66, Eq.
(6)]. R ducanu and Srivastava (see [43] and
the references cited therein), on the other hand,
made use of the Hurwitz-Lerch Zeta function
Φ(z, s, a) in de�ning a certain linear convolu-
tion operator in their systematic investigation
of various analytic function classes in Geometric
Function Theory in Complex Analysis. Further-
more, Gupta et al. [26] revisited the study of
the familiar Hurwitz-Lerch Zeta distribution by
investigating its structural properties, reliabil-
ity properties and statistical inference. These
investigations by Gupta et al. [26] and oth-
ers (see, for example, [53], [57], [60] and [61]),
fruitfully using the Hurwitz-Lerch Zeta function
Φ(z, s, a) and some of its above-mentioned gen-
eralizations, motivated Srivastava et al. [67] to
present a further generalization and analogous
investigation of a new family of Hurwitz-Lerch
Zeta functions de�ned in the following form [67,
p. 491, Equation (1.20)]:

Φ
(ρ,σ,κ)
λ,µ;ν (z, s, a) :=

∞∑
n=0

(λ)ρn(µ)σn
(ν)κn · n!

zn

(n+ a)s

(92)
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(
λ, µ ∈ C; a, ν ∈ C \ Z−0 ; ρ, σ, κ ∈ R+;

κ− ρ− σ > −1 when s, z ∈ C;

κ− ρ− σ = −1 and s ∈ C
when|z| < δ∗ := ρ−ρ σ−σ κκ;

κ− ρ− σ = −1 and <(s+ ν − λ− µ) > 1

when |z| = δ∗) .

For the above-de�ned function in (92), Srivas-
tava et al. [67] established various integral rep-
resentations, relationships with the H-function
which is de�ned by means of a Mellin-Barnes
type contour integral (see, for example, [65]
and [67]), fractional derivative and analytic
continuation formulas, as well as an extension
of the generalized Hurwitz-Lerch Zeta function

Φ
(ρ,σ,κ)
λ,µ;ν (z, s, a) in (92). This natural further

extension and generalization of the function

Φ
(ρ,σ,κ)
λ,µ;ν (z, s, a) was indeed accomplished by in-

troducing essentially arbirary numbers of nu-
merator and denominator parameters in the def-
inition (92). For this purpose, in addition to the
symbol ∇∗ de�ned by

∇∗ :=

 p∏
j=1

ρ
−ρj
j

 ·
 q∏
j=1

σ
σj
j

 , (6.19)

the following notations will be employed:

∆ :=

q∑
j=1

σj −
p∑
j=1

ρj

and

Ξ := s+

q∑
j=1

µj −
p∑
j=1

λj +
p− q

2
. (93)

Then the extended Hurwitz-Lerch Zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

is de�ned by [67, p. 503, Equation (76)]

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a) (94)

:=

∞∑
n=0

p∏
j=1

(λj)nρj

n!
q∏
j=1

(µj)nσj

zn

(n+ a)s
(95)

(p, q ∈ N0; λj ∈ C (j = 1, · · · , p);
a, µj ∈ C \ Z−0 (j = 1, · · · , q);
ρj , σk ∈ R+ (j = 1, · · · , p; k = 1, · · · , q);
∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ Cwhen |z| < ∇∗;

∆ = −1 and <(Ξ) >
1

2
when |z| = ∇∗

)
.

The special case of the de�nition (95) when
p − 1 = q = 1 would obviously correspond
to the above-investigated generalized Hurwitz-

Lerch Zeta function Φ
(ρ,σ,κ)
λ,µ;ν (z, s, a) de�ned by

(92).

If we set

p 7→ p+1 (ρ1 = · · · = ρp = 1; λp+1 = ρp+1 = 1)

and

q 7→ q + 1

(
σ1 = · · · = σq = 1;

µq+1 = β; σq+1 = α

)
,

then (95) reduces to the following general-
ized M -series which was recently introduced by
Sharma and Jain [46] as follows:

α,β

pMq(a1, · · · , ap; b1, · · · , bq; z)

=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

Γ(αk + β)

=
1

Γ(β)

·p+1 Ψ∗q+1

 (a1, 1) , · · · , (ap, 1) , (1, 1);

(b1, 1) , · · · , (bq, 1) , (β, α);
z

 .
(96)

This last relationship (96) exhibits the fact that
the so-called generalized M -series is, in fact, an
obvious variant of the Fox-Wright function pΨ

∗
q

or pΨ
∗
q (p, q ∈ N0), which is a generalization

of the familiar generalized hypergeometric func-
tion pFq (p, q ∈ N0), with p numerator param-
eters a1, · · · , ap and q denominator parameters
b1, · · · , bq such that

aj ∈ C (j = 1, · · · , p),
bj ∈ C \ Z−0 (j = 1, · · · , q),
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de�ned by (see, for details, [17, p. 183] and [64,
p. 21]; see also [33, p. 56], [38, p. 30] and [63, p.
19])

pΨ
∗
q

 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;
z


:=

∞∑
n=0

(a1)A1n
· · · (ap)Apn

(b1)B1n
· · · (bq)Bqn

zn

n!

=
Γ (b1) · · ·Γ (bq)

Γ (a1) · · ·Γ (ap)

· pΨq

 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;
z

 (97)


Aj > 0 (j = 1, · · · , p) ; Bj > 0 (j = 1, · · · , q) ;

1 +

q∑
j=1

Bj −
p∑
j=1

Aj = 0

 ,

where the equality in the convergence condition
holds true for suitably bounded values of |z|
given by

|z| < ∇ :=

 p∏
j=1

A
−Aj
j

 ·
 q∏
j=1

B
Bj
j

 .

In the particular case when

Aj = Bk = 1 (j = 1, · · · , p; k = 1, · · · , q),

we have the following relationship (see, for de-
tails, [64, p. 21]):

pΨ
∗
q

 (a1, 1) , · · · , (ap, 1) ;

(b1, 1) , · · · , (bq, 1) ;
z


= pFq

 a1, · · · , ap;

b1, · · · , bq;
z


=

Γ (b1) · · ·Γ (bq)

Γ (a1) · · ·Γ (ap)

· pΨq

 (a1, 1) , · · · , (ap, 1) ;

(b1, 1) , · · · , (bq, 1) ;
z

 , (98)

in terms of the generalized hypergeometric
function pFq (p, q ∈ N0).

Each of the following results involving the ex-
tended Hurwitz-Lerch Zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

can be proven by applying the de�nition (95)
in precisely the same manner as for the corre-
sponding result involving the general Hurwitz-

Lerch Zeta function Φ
(ρ,σ,κ)
λ,µ;ν (z, s, a) (see, for de-

tails, [67, Section 6]).

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a) =

1

Γ(s)

∫ ∞
0

ts−1 e−at

· pΨ∗q

 (λ1, ρ1), · · · , (λp, ρp);

(µ1, σ1), · · · , (µq, σq);
ze−t

 dt (99)

(
min{<(a),<(s)} > 0

)
,

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a) =

q∏
j=1

Γ (µj)

p∏
j=1

Γ (λj)

· 1

2πi

·
∫
L

Γ(−ξ) {Γ(ξ + a)}s
p∏
j=1

Γ (λj + ρjξ)

{Γ(ξ + a+ 1)}s
q∏
j=1

Γ (µj + σjξ)

(−z)ξ dξ

(100)(
| arg(−z)| < π

)
or, equivalently,

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

=

q∏
j=1

Γ (µj)

p∏
j=1

Γ (λj)

·H1,p+1

p+1,q+2[z | E], (101)

where E :=

(1− λ1, ρ1; 1), · · · , (1− λp, ρp; 1), (1− a, 1; s)
(0, 1), (1− µ1, σ1; 1), · · · , (1− µq, σq; 1), (−a, 1; s),

provided that both sides of the assertions (99),
(100) and (101) exist, the path of integration
L in (101) being a Mellin-Barnes type contour
in the complex ξ-plane, which starts at the
point −i∞ and terminates at the point i∞ with
indentations, if necessary, in such a manner as
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to separate the poles of Γ(−ξ) from the poles of
Γ (λj + ρjξ) (j = 1, · · · , p).

The H-function representation given by (101)
can be applied in order to derive various proper-
ties of the extended Hurwitz-Lerch Zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

from those of the H-function. Thus, for exam-
ple, by making use of the following fractional-
calculus result due to Srivastava et al. [65, p.
97, Eq. (17)]:

Dνz
{
zλ−1 H

m,n

p,q (ωzκ)
}

= zλ−ν−1 H
m,n+1

p+1,q+1[ωzκ|E], (102)(
<(λ) > 0; κ > 0

)
,

where E :=

(1− λ, κ; 1) , (aj , Aj ;αj)
n
j=1 , (aj , Aj)

p
j=n+1

(bj , Bj)
m
j=1 , (bj , Bj ;βj)

q
j=m+1 , (1− λ+ ν, κ; 1) ,

we readily obtain an extension of such fractional
derivative formulas as (for example) (89) given
by

Dν−τz

{
zν−1 Φ

(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (zκ, s, a)

}

=

q∏
j=1

Γ (µj)

p∏
j=1

Γ (λj)

zτ−1 ·H1,p+2

p+2,q+3[−zκ|E]

=
Γ(ν)

Γ(τ)
zτ−1 Φ

(ρ1,··· ,ρp,κ,σ1,··· ,σq,κ)
λ1,··· ,λp,ν;µ1,··· ,µq,τ (zκ, s, a),

(103)(
<(ν) > 0; κ > 0

)
where

E :=
E1, · · · , Ep, (1− ν, κ; 1), (1− a, 1; s)

(0, 1), F1, · · · , Fq, (1− τ, κ; 1), (−a, 1; s)

with Ei = (1−λi, ρi; 1), Fj = (1−µj , σj ; 1) (i =
1, p, j = 1, q). Finally, we present the following
extension of a known result [67, p. 496, Theorem
3] (see also [67, p. 505, Theorem 9].

Theorem. Let
(
αn
)
n∈N0

be a positive sequence
such that the following in�nite series:

∞∑
n=0

e−αnt

converges for any t ∈ R+. Then

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

=
1

Γ(s)

∞∑
n=0

∫ ∞
0

ts−1 e−(a−α0+αn)t

·
(

1− e−(αn+1−αn)t
)

· pΨ∗q

 (λ1, ρ1), · · · , (λp, ρp);

(µ1, σ1), · · · , (µq, σq);
ze−t

 dt

(104)(
min{<(a),<(s)} > 0

)
,

provided that each member of (104) exists.

It would be nice and worthwhile to be able
to extend the results presented in Sections 2 to
5 of this lecture to hold true for the Hurwitz-
Lerch Zeta function Φ (z, s, a) and for some of
its generalizations given by the Lin-Srivastava

Zeta function Φ
(ρ,σ)
µ,ν (z, s, a) and the extended

Hurwitz-Lerch Zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

de�ned by (95) for special values of the vari-
ous parameters involved in the de�nitions (83)
and (95). Several much more general open prob-
lems would involve the following λ-generalized
Hurwitz-Lerch Zeta function whose investiga-
tion was initiated by Srivastava [56]:

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; b, λ)

:=
1

Γ(s)

∫ ∞
0

ts−1 exp

(
−at− b

tλ

)

· pΨ∗q

 (λ1, ρ1), · · · , (λp, ρp);

(µ1, σ1), · · · , (µq, σq);
ze−t

 dt,

(105)(
min{<(a),<(s)} > 0; <(b) = 0; λ = 0

)
,

so that, obviously, we have the following rela-
tionship:

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; 0, λ)

= Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

= eb Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; b, 0). (106)
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Indeed, for the sake of the interested reader, we
recall from Srivastava's work [56] the following
explicit series representation formulas hold true
for the λ-generalized Hurwitz-Lerch Zeta func-
tion

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; b, λ)

de�ned by (105):

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; b, λ)

=
1

λΓ (s)

∞∑
n=0

p∏
j=1

(λj)nρj

(a+ n)
s ·

q∏
j=1

(µj)nσj

·H2,0
0,2

(a+ n)b
1
λ

∣∣∣∣∣∣ (s, 1),
(
0, 1

λ

)
 zn

n!
,

(107)

where λ > 0 and Hm,n
p,q [·] denotes Fox's H-

function (see, for details, [63].

The theory and applications of the various
special as well as limit cases of the λ-generalized
Hurwitz-Lerch Zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; b, λ),

in addition to those mentioned above, can be
found in (for example) the recent works [56]
and [66], and indeed also in many of the earlier
references which are cited in each of these recent
works. Remarkably, just as its such aforemen-
tioned special cases as the Hurwitz-Lerch Zeta
function Φ(z, s, a) and related Zeta functions,
the λ-generalized Hurwitz-Lerch Zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a; b, λ)

de�ned by (105) is potentially useful and is cur-
rently being applied in many areas of the mathe-
matical, statistical, physical and engineering sci-
ences. The relevant details of such developments
are easily accessible in the current literature on
the subject.
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