
Yongzheng ZHANG\(^1\), Huilong REN\(^1\), Timon RABCZUK\(^1, *\)

\(^1\)Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar, Germany

*Corresponding Author: Timon RABCZUK (Email: timon.rabczuk@uni-weimar.de)
(Received: 4-Dec-2021; accepted: 23-Feb-2022; published: 31-Mar-2022)
DOI:http://dx.doi.org/10.55579/jaec.202261.357

Abstract. The nonlocal operator method (NOM) is based on nonlocal theory and employs nonlocal operators of integral form to replace the local partial differential operators. NOM naturally bridges models of different length scales and enables also the natural solution of problems with continuous to discontinuous solutions as they occur in the case of material failure. It also provides a natural framework for complex multifield problems. It is based on a variational principle or weighted residual method and only requires the definition of associated energy potential. As the NOM does not require any shape functions as ‘traditional methods’ such as FEM, IGA or meshfree methods, its implementation is significantly simplified. It has been successfully applied to the solution of several partial differential equations (PDEs). This paper aims to provide a comprehensive description of the NOM together with a review of its major applications for the solution of PDEs for challenging engineering problems. Finally, we give some potential future research direction in the area of methods based on nonlocal operators.

Keywords

Nomenclature

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>spatial coordinates in domain (\Omega)</td>
</tr>
<tr>
<td>(u)</td>
<td>displacement field</td>
</tr>
<tr>
<td>(\xi_{ij})</td>
<td>relative position vector</td>
</tr>
<tr>
<td>(w(\xi_{ij}))</td>
<td>the weight function</td>
</tr>
<tr>
<td>(S_i)</td>
<td>the support of particle (x_i)</td>
</tr>
<tr>
<td>(S'_i)</td>
<td>the dual-support of particle (x_i)</td>
</tr>
<tr>
<td>(\tilde{\nabla} \otimes u_i)</td>
<td>nonlocal gradient operator of point (x_i)</td>
</tr>
<tr>
<td>(\tilde{\nabla} \times u_i)</td>
<td>nonlocal curl operator of point (x_i)</td>
</tr>
<tr>
<td>(\tilde{\nabla} \cdot u_i)</td>
<td>nonlocal divergence operator of point (x_i)</td>
</tr>
<tr>
<td>(\mathcal{F}_{hg})</td>
<td>operator energy functional of point (x_i)</td>
</tr>
<tr>
<td>(K_i)</td>
<td>the shape tensor</td>
</tr>
<tr>
<td>(\partial \Omega)</td>
<td>the boundary of domain (\Omega)</td>
</tr>
</tbody>
</table>
1. Introduction

In engineering analysis, numerous central models can be quantitatively described by one or more partial differential equations (PDEs), known as the governing equations. PDEs describe complex phenomena such as motion, reaction, diffusion, equilibrium, conservation, just to name a few. Due to the complexity of most problems, analytical solutions exist only for restricted circumstances with simple geometries and boundary conditions. Therefore, numerical methods have been developed over many decades. They include the finite element method (FEM) [1]-[6], extended finite-element method (XFEM) [7, 8], Reproducing Kernel Particle Method (RKPM) [9]-[12], Petrov-Galerkin Diffuse Element Method (PG DEM) [13, 14], Partition of Unity Methods (PUM) [15]-[18], isogeometric analysis (IGA) [19]-[25], the reproducing kernel collocation method [26]-[33], Element-Free Galerkin (EFG) method [34]-[37], hp-Meshless clouds (HPC) [38], Generalized Finite Difference Method (GFDM) [39]-[43], Smoothed Particle Hydrodynamics (SPH) [44]-[48], Peridynamics (PD) [49], to name a few.

One key task in numerical methods for solving PDEs is to devise methodologies for numerically representing, formulating, and computing the various differential operators. In order to solve the unknown field, the FEM and most meshless methods, for example, employ shape functions by introducing interpolations or approximations of the field variables via nodal values. The shape function derivatives are then used to represent and compute the differential operators of the field variables. Or in other words, instead of applying the differential operators directly to the approximation, they are applied to the shape functions. In many applications, the construction of the shape functions and their derivatives can become challenging. Also problems with moving boundaries impose strong requirements on the shape functions of the underlying discretization. These issues can be dealt with meshless methods or so-called extended FEMs which employ enrichment functions and introduce additional degrees of freedom into the discretization. However, the implementation in 3D is challenging due to the description of the interface/frack topology.

Another efficient way to deal with such problems is to ‘smear’ out the discontinuity. So-called nonlocal theories introduce an intrinsic length scale and avoid treating problems with
discontinuities. They have been used nonlocal elasticity [50]-[54], nonlocal fluid dynamics [55]-[57], nonlocal continuum field theories [58]-[61], nonlocal electromagnetic theory [62]-[64], nonlocal damage mechanics [65]-[68] and nonlocal calculus [69, 70]. The nonlocal theory based on an integral form provides an improved predictive capability to capture effects that classical differential equations fail to capture. In comparison to the local theory, the nonlocal theory not only has a greater numerical well-posedness, but also resembles the real physical process better due to its inherent length scale [59, 71, 65]. A popular approach based on nonlocal theory is peridynamics (PD) [72]-[78], which has received great interest because of its comparatively simple numerical implementation for fracture. To account for long-range forces, PD reformulates the elasticity theory in integral form, overcoming the challenge of defining the local derivatives for fractures. In contrast to numerical models based on classical local continuum mechanics, PD theories employ integro-differential equations without displacement derivatives, which naturally enable the occurrence of discontinuities in the displacement field as it does not require spatial derivatives of the displacement field. Furthermore, PD can naturally deal with complicated fracture processes such as crack branching and coalescence. PD models include bond-based peridynamics (BB-PD) models [79]-[83], state-based peridynamic (SB-PD) models [84]-[89], dual-horizon peridynamics (DH-PD) [90]-[93] and hybrid models coupling classical continuum mechanics with PD [94]-[100]. PD has been applied to numerous problems such as plate/shell analysis [101]-[106], mixed peridynamic Petrov-Galerkin method [100, 107], phase-field damage models [108]-[111], wave dispersion analysis [112]-[117] and higher-order approaches [118]-[122], to name a few.

In recent years, several numerical approaches based on peridynamic differential operator (PDDO) [123]-[139] have been proposed, which can be viewed as an interesting extension of PD. PDDO employs the concept of PD interactions. It is based on the Taylor Series Expansion (TSE) of multi-variable scalar functions and the orthogonality property of PD functions. PDDO provides any order of derivatives to be derived directly from the orthogonality requirement of the PD functions without any differentiation. It does not use a kernel function or repeatability criteria for different derivative orders and permits the precise calculation of any arbitrary order of partial derivatives of spatial and temporal functions. Directly determining the PD functions for the derivatives is done by making them orthogonal to each term in the Taylor series expansion. When finding the PD functions in the presence of a nonsymmetric family, both the lower-order and higher-order derivatives affect each other. PDDO is exempt from the symmetric requirement which eliminates the need for ghost points at the boundary.

Another approach, which can be considered as an extension to PD, is the Nonlocal Operator Method (NOM), which has been first proposed in [140] for electromagnetic problems. The approach has been subsequently extended to mechanical problems in [141]-[150]. NOM is based on ’conventional’ differential operators to define the nonlocal operators. It adopts concepts such as support and dual support with finite characteristic length, and it utilizes a TSE to calculate partial derivatives. NOM has been applied to numerous challenging problems in solid mechanics and is a viable alternative to FEM or meshless methods. In combination with the weighted residual and variational methodology, NOM constructs the operator energy functional through common matrix operations. While FEM and meshless methods require shape functions to compute derivatives, NOM acquires those through the differential operators ’naturally’ without the use of shape functions. Or in other words: Nonlocal operators can be regarded as an alternative to partial derivatives of shape functions in FEM. The tangent stiffness is obtained naturally by simply defining an energy function, thus drastically simplifying the implementation. Since NOM also makes use of the concepts of support and dual-support, nonlocal strong forms for a wide range of physical problems can be naturally derived. Up to date, three versions of NOM have been presented: first-order / higher-order particle-based NOM and higher-order ’numerical integration-based’ NOM. When nodal integration is used,
the particle-based version may be considered as a special case of NOM with numerical integration. In this paper, the developments and applications of NOM for solving PDEs are reviewed. The remainder of the paper is outlined as follows: In Section 2, we briefly review the NOM. Section 3 addresses applications of NOM for solving PDEs. Finally, some future research perspectives are presented in Section 4 before the manuscript concludes in Section 5.

2. Nonlocal operator method (NOM) and its developments

2.1. Fundamentals of NOM: Support, dual-support, nonlocal operators, and operator energy functional

Consider the initial and present configurations of a solid, as depicted in Fig. 1(a). Let \(x_i \) be spatial coordinates in the domain \(\Omega \); the spatial vector \(\xi_{ij} := x_j - x_i \) starts from \(x_i \) to \(x_j \); \(u_i := u(x_i, t) \) and \(u_j := u(x_j, t) \) are the field values for \(x_i \) and \(x_j \), respectively; \(u_{ij} := u_j - u_i \) is the relative displacement field \(\xi_{ij} \) and Support \(S_i \) of point \(x_i \) is the domain where any spatial point \(x_j \) forms a spatial vector \(\xi_{ij} (= x_j - x_i) \) from \(x_i \) to \(x_j \). The support serves as the basis for the nonlocal operators. It should be noted there is no restriction on the support shapes (such as spherical, cube, and so on). Dual-support is defined as a union of the points whose supports include \(x_i \), indicated by

\[
S_i' = \{x_j | x_i \in S_j\}. \tag{1}
\]

Point \(x_j \) forms the dual-vector \(\xi_{ij}' (= x_i - x_j = -\xi_{ij}) \) in \(S_i' \); \(\xi_{ij}' \) is the spatial vector established in \(S_i' \). Fig. 1(b) illustrates the concept of support and dual-support. NOM replaces the local operator with nonlocal operators. By substituting the local differential operator with the corresponding nonlocal operator, the functional defined by the local differential operator can be utilized to generate the residual or tangent stiffness matrix. The nonlocal operators for a vector field \(u \) and scalar field \(u \) for point \(x_i \) in support \(S_i \) can be defined as follows

1 Nonlocal gradient operator

\[
\begin{align*}
(a) \text{Vector field } \nabla \otimes u_i & := \int_{S_i} \omega(\xi_{ij}) u_{ij} \otimes \xi_{ij} dV_j - \left(\int_{S_i} \omega(\xi_{ij}) \xi_{ij} \otimes \xi_{ij} dV_j \right)^{-1} \\
(b) \text{Scalar field } \nabla u_i & := \int_{S_i} \omega(\xi_{ij}) u_{ij} \xi_{ij} dV_j - \left(\int_{S_i} \omega(\xi_{ij}) \xi_{ij} \otimes \xi_{ij} dV_j \right)^{-1} \tag{2}
\end{align*}
\]

2 Nonlocal curl operator

\[
\begin{align*}
\text{Vector field } \nabla \times u_i & := \int_{S_i} \omega(\xi_{ij}) \left[\int_{S_i} \omega(\xi_{ij}) \xi_{ij} \otimes \xi_{ij} dV_j \right]^{-1} \cdot \xi_{ij} dV_j \times u_{ij} dV_j \tag{3}
\end{align*}
\]

3 Nonlocal divergence operator

\[
\begin{align*}
\text{Vector field } \nabla \cdot u_i & := \int_{S_i} \omega(\xi_{ij}) u_{ij} \cdot \left[\int_{S_i} \omega(\xi_{ij}) \xi_{ij} \otimes \xi_{ij} dV_j \right]^{-1} \cdot \xi_{ij} dV_j \tag{4}
\end{align*}
\]
The operator energy functional for a vector field \mathbf{u} and scalar field u for point \mathbf{x}, in support S_i can be defined as follows

\[
\begin{cases}
\mathcal{F}_{\mathbf{u}}^h = \frac{p_{\mathbf{h}}}{2mK_i} \int_{S_i} w(\xi_{ij})(\tilde{\nabla}u_i \cdot \xi_{ij} - u_{ij})^T dV_j \\
\mathcal{F}_u^h = \frac{p_{\mathbf{h}}}{2mK_i} \int_{S_i} w(\xi_{ij})(\tilde{\nabla}u_i \cdot \xi_{ij} - u_{ij}) dV_j
\end{cases}
\]

(5)

where $w(\xi_{ij})$ is the weight function, $p_{\mathbf{h}}/mK_i$ is a coefficient for the operator energy functional, $p_{\mathbf{h}}$ is the penalty coefficient, $mK_i (= |\mathbf{tr}[K_i]|)$ is the normalization coefficient and K_i is a shape tensor defined as

\[K_i = \int_{S_i} w(\xi_{ij})\xi_{ij} \otimes \xi_{ij} dV_j\]

(6)

2.2. First-order particle-based NOM

The first-order NOM was proposed for the solution of PDEs by Rabczuk, et al. [140, 141]. In the first-order particle-based NOM, a vector field \mathbf{u} at a point (0,0) is approximated by using a Taylor series expansion neglecting higher order terms

\[\mathbf{u}' = \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{\xi} + O(\mathbf{\xi}^2)\]

(7)

where $\nabla := (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})^T$, $\mathbf{\xi} := (x, y, z)^T$ denotes the initial bond vector, $O(\mathbf{\xi}^2)$ represents higher order terms, and for a linear field $O(\mathbf{\xi}^2) = 0$. The nonlocal gradient operator $\tilde{\nabla} \mathbf{u}_i$ at point \mathbf{x}_i is written as

\[\tilde{\nabla} \mathbf{u}_i = \sum_{j \in S_i} w(\xi_{ij})(\mathbf{u}_j - \mathbf{u}_i) \otimes \xi_{ij} \Delta V_j \cdot \left[\sum_{j \in S_i} w(\xi_{ij}) \xi_{ij} \otimes \xi_{ij} \Delta V_j \right]^{-1}\]

(8)

The matrix form of the nonlocal gradient operator $\tilde{\nabla} \mathbf{u}$ at point \mathbf{x}_i for a vector field can be written as

\[\tilde{\nabla} \mathbf{u}_i = \begin{bmatrix} \frac{\partial u_i}{\partial x}, \frac{\partial u_i}{\partial y}, \frac{\partial u_i}{\partial z} \end{bmatrix}\]

\[= \begin{bmatrix} -\sum_{j \in S_i} \xi_{xj}, \xi_{yj}, \xi_{zj} & \cdots & \xi_{xjn}, \xi_{yjn}, \xi_{zjn} \end{bmatrix} \begin{bmatrix} u_j & v_j & \cdots & u_j & v_j & \cdots \\ u_{j1} & v_{j1} & \cdots & u_{j1} & v_{j1} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ u_{jn} & v_{jn} & \cdots & u_{jn} & v_{jn} & \cdots \end{bmatrix}\]

(9)

The nonlocal gradient operator $\tilde{\nabla} \mathbf{u}$ at point \mathbf{x}_i for a scalar field is written as

\[\tilde{\nabla} u_i = \begin{bmatrix} \frac{\partial u_i}{\partial x}, \frac{\partial u_i}{\partial y}, \frac{\partial u_i}{\partial z} \end{bmatrix}\]

\[= \begin{bmatrix} -\sum_{j \in S_i} \xi_{xj}, \xi_{yj}, \xi_{zj} & \cdots & \xi_{xjn}, \xi_{yjn}, \xi_{zjn} \end{bmatrix} \begin{bmatrix} u_j \\ u_{j1} \\ \vdots \\ u_{jn} \end{bmatrix}\]

(10)

The nonlocal gradient operator $\tilde{\nabla} \mathbf{u}$ at point \mathbf{x}_i for a vector field can be written as

\[\tilde{\nabla} \mathbf{u}_i = \begin{bmatrix} \frac{\partial u_{i1}}{\partial x}, \frac{\partial u_{i1}}{\partial y}, \frac{\partial u_{i1}}{\partial z} \end{bmatrix}\]

\[= \begin{bmatrix} -\sum_{j \in S_i} \xi_{xj}, \xi_{yj}, \xi_{zj} & \cdots & \xi_{xjn}, \xi_{yjn}, \xi_{zjn} \end{bmatrix} \begin{bmatrix} u_j \\ u_{j1} \\ \vdots \\ u_{jn} \end{bmatrix}\]

(11)

with

\[(\xi_{xj}, \xi_{yj}, \xi_{zj}) = \begin{bmatrix} w(\xi_{ij}) \xi_{ij}^T \end{bmatrix} \begin{bmatrix} \sum_{j \in S_i} w(\xi_{ij}) \xi_{ij} \otimes \xi_{ij} \Delta V_j \end{bmatrix}^{-1}

Nodal integration, which is commonly used in the NOM, suffers from a zero-energy mode [151, 152], which in turn results in numerical
instability. To eliminate these instabilities, traditional PD and SPH introduce a penalty term to the force state \cite{153}. However, this approach is only applicable for explicit dynamics. NOM on the other hand employs the operator energy functional to prevent numerical instabilities. In first-order NOM, the operator energy functional and its tangent stiffness matrix can be written as \cite{141, 149}

\[
\mathbf{f}^{bg}_i = \frac{p^{bg}}{2m_{K_i}} \mathbf{\mathcal{U}}^T_i \begin{bmatrix}
\sum_{j \in S_i} I_j - I_{j_1} & \cdots & - I_{j_n} \\
-1 & I_{j_1} & \cdots & 0 \\
\vdots & & \ddots & \ddots \\
-1 & \cdots & 0 & I_{j_n}
\end{bmatrix}
\begin{bmatrix}
K_i \\
0 \\
\vdots \\
0
\end{bmatrix} \mathbf{\mathcal{U}}_i
\]

where \(I_j = w(\xi_{ij}) \Delta V_j (1, 1, 1) \otimes (1, 1)^T\).

\[
\mathbf{K}_i^{bg} = \frac{p^{bg}}{m_{K_i}} \begin{bmatrix}
\sum_{j \in S_i} I_j - I_{j_1} & \cdots & - I_{j_n} \\
-1 & I_{j_1} & \cdots & 0 \\
\vdots & & \ddots & \ddots \\
-1 & \cdots & 0 & I_{j_n}
\end{bmatrix}
\begin{bmatrix}
K_i \\
0 \\
\vdots \\
0
\end{bmatrix} \mathbf{\mathcal{U}}_i
\]

\[
K_i = \sum_{j \in S_i} \left(\mathbf{\mathcal{B}}_i^T (\mathbf{D} - \frac{p^{bg}}{m_{K_i}} \begin{bmatrix}
K_i \\
0 \\
0
\end{bmatrix} \begin{bmatrix}
K_i & 0 & 0 \\
0 & K_i & 0 \\
0 & 0 & K_i
\end{bmatrix} \mathbf{\mathcal{B}}_i) \right) \Delta V_j
\]

\[
+ \frac{p^{bg}}{m_{K_i}} \begin{bmatrix}
\sum_{j \in S_i} I_j - I_{j_1} & \cdots & - I_{j_n} \\
-1 & I_{j_1} & \cdots & 0 \\
\vdots & & \ddots & \ddots \\
-1 & \cdots & 0 & I_{j_n}
\end{bmatrix}
\Delta V_j
\]

\[
(12)
\]

\[
(13)
\]

\[
(14)
\]

2.3. Higher order particle-based NOM

The first-order particle-based NOM \cite{140, 141} can solve lower order (up to fourth-order) PDEs, but their accuracy degrades considerably as the order of the PDE increases. Therefore, a higher-order NOM has been proposed in \cite{142}, which is applicable to the solution of higher-order PDEs of any order, including coupled problems. The higher-order NOM acquires all partial derivatives of higher orders in a straightforward and efficient manner without the need for shape functions as stated before. Independent of the numerical implementation, it can be utilized to establish nonlocal governing equations based on the energy functional. In the higher-order particle-based NOM, a vector field \(\mathbf{u}\) at a point \(x_j \in S_i\) is approximated by using a vector form of the Taylor series expansion that includes the characteristic length scale \(l_i\) of support \(S_i\) at \(u_i\) in dimensions with \(n\) as the highest order of derivatives:

\[
\mathbf{u}_j = \mathbf{u}_i + \sum_{(n_1, \ldots, n_r) \in \alpha^n} \xi_{ij}^{n_1} \cdots \xi_{ij}^{n_r} \left(\begin{array}{c}
\mathbf{\mathcal{V}}_{i}^{n_1} \cdots \mathbf{\mathcal{V}}_{i}^{n_r} \\
(1 \cdots 1) u_{i,1 \ldots n_r}
\end{array} \right) + O(\xi_{ij}^{n+1})
\]

where \(\alpha^n\) is the list of flattened multi-indices, \(I_i\) is a characteristic length of support \(S_i\) at \(u_i\) and the factor can be written as

\[
\alpha^n = \{(n_1, \ldots, n_r)|1 \leq \sum_{i=1}^r n_i \leq n, \quad n_i \in \mathbb{N}^0, 1 \leq i \leq r\}
\]

\[
\xi_{ij} = (x_{j1} - x_{i1}, \ldots, x_{jd} - x_{id})
\]

\[
\mathbf{u}_{i,1 \ldots n_r} = \frac{\partial \mathbf{\mathcal{V}}_{i}^{n_1} \cdots \partial \mathbf{\mathcal{V}}_{i}^{n_r}}{\partial x_{i1} \cdots \partial x_{id}}
\]

\[
|\alpha| = \max(n_1 + \ldots + n_r)
\]

The list of the flattened polynomials \(p_j^\alpha\), scaled partial derivatives \(\partial_n^\alpha\mathbf{u}_i\), and partial derivatives \(\partial_{\alpha}^n\mathbf{u}_i\) in higher NOM are written as

\[
p_j^\alpha = \left(\frac{\xi_{i1}}{1}, \ldots, \frac{\xi_{ir}}{1}, \ldots, \frac{\xi_{ir}}{1} \right)
\]

\[
\partial_{\alpha}^n \mathbf{u}_i = \left(u_{i,0} \cdots 1, \ldots, u_{i,1 \ldots n_r} \cdots 1, \ldots, u_{i,1 \ldots n_r} \cdots 1 \right)^T
\]

\[
\partial_n^\alpha \mathbf{u}_i = \left(u_{i,0} \cdots 1, \ldots, u_{i,1 \ldots n_r} \cdots 1, \ldots, u_{i,1 \ldots n_r} \cdots 1 \right)^T.
\]

The nonlocal operator \(\partial_{\alpha}^n\mathbf{u}_i\) at point \(x_i\) is given by

\[
\partial_{\alpha}^n \mathbf{u}_i = \mathbf{I}_i^{-1} \left(\int_{S_i} w(\xi_{ij})p_j^\alpha \otimes (p_j^\alpha)^T \mathbf{D} \mathbf{V}_j \right)^{-1} \int_{S_i} w(\xi_{ij})p_j^\alpha \mathbf{u}_{ij} \mathbf{D} \mathbf{V}_j
\]

\[
= \mathbf{K}_i \frac{1}{1} \mathbf{p}_j^\alpha \mathbf{\Delta} \mathbf{u}_i
\]
where

$$L_i = \text{diag}[l_{i1}, \ldots, l_{in_i}]$$ \quad (22)

$$p_{\alpha i} = \left(w(\xi_{ij}), \Delta V_j, \ldots, w(\xi_{ijn_i}), \Delta V_{jn_i} \right)$$ \quad (23)

$$\Delta u_i = (u_{ij1}, \ldots, u_{ijn_i})^T$$ \quad (24)

The matrix form of the nonlocal operator $\delta_{\alpha}u_i$ is

$$\delta_{\alpha}u_i = K_{\alpha i}p_{\alpha i}^T \Delta u_i$$

$$= \left[-(1, \ldots, 1)_{n_i}K_{\alpha i}p_{\alpha i}^T, K_{\alpha i}p_{\alpha i}^T \right] \begin{bmatrix} u_{i1} \\ u_{i2} \\ \vdots \\ u_{ijn_i} \end{bmatrix}$$

$$= B_{\alpha i}U_i$$ \quad (25)

The global tangent stiffness matrix in support S_i can be expressed as

$$k_{\alpha i} = \sum_{j \in S_i} \left(B_{\alpha i} \cdot p_{\alpha i} \cdot B_{\alpha i} \right)$$

$$\Delta V_j$$

$$(29)$$

2.4. Higher-order ’numerical integration-based’ NOM

The global tangent stiffness matrix in support S_i can be expressed as

$$k_{\alpha i} = \sum_{j \in S_i} \left(B_{\alpha i} \cdot p_{\alpha i} \cdot B_{\alpha i} \right)$$

$$\Delta V_j$$

$$(29)$$

The particle-based first-order and higher-order NOM have difficulties in precisely enforcing boundary conditions of arbitrary order decreasing the convergence rate. Furthermore, particle-based approaches need stabilization, which can be accomplished, for example, using the operator energy functional [140]-[142]. Nevertheless, the operator energy functional contains a penalty factor. Ren et al. [143] proposed a scheme with approximation property, which specifies partial derivatives of various orders at a point by the nodes in the support and employs a background mesh for numerical integration, which circumvents just mentioned restrictions. A modified variational principle is used to impose the boundary conditions. When nodal integration is utilized, the particle-based NOM can be considered as a specific version of ’NOM with approximation property’. The numerical integration methodology considerably increases the method’s stability. As a result, the operator energy functional needed in the particle-based NOM is avoided. However, the NOM approximation scheme does not meet the Kronecker-delta property, which makes the enforcement of Dirichlet boundary requirements problematic. Dirichlet boundary conditions can be enforced in a variety of ways in meshless methods. The penalty method, the Lagrange multiplier method and the modified variational principle are among the most prevalent schemes. To impose the boundary requirements, the modified variational principle is adopted here. Thus,
the energy functional is divided into two components that are connected to the domain and the boundary:

\[\mathcal{F} = \int_{\Omega} \bar{f} d\Omega + \sum_i \int_{\Gamma_i} \bar{f}_i d\Gamma \]

(30)

where \(\bar{f} \) is the energy functionals defined in the domain, \(\bar{f}_i \) is the functionals defined on the boundaries. In most cases, the boundary functional is more complicated than that in the domain. The residual vector and tangent stiffness matrix can be derived when combined with the nonlocal operator matrix.

\[\begin{vmatrix} \frac{\partial \bar{f}}{\partial \xi} & \frac{\partial \bar{f}}{\partial \eta} & \frac{\partial \bar{f}}{\partial \zeta} \\ \frac{\partial \bar{f}}{\partial \xi} & \frac{\partial \bar{f}}{\partial \eta} & \frac{\partial \bar{f}}{\partial \zeta} \\ \frac{\partial \bar{f}}{\partial \xi} & \frac{\partial \bar{f}}{\partial \eta} & \frac{\partial \bar{f}}{\partial \zeta} \end{vmatrix} \]

\[w = w_c |J| = w_c \left| \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \zeta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} & \frac{\partial y}{\partial \zeta} \\ \frac{\partial z}{\partial \xi} & \frac{\partial z}{\partial \eta} & \frac{\partial z}{\partial \zeta} \end{vmatrix} \right| \]

(32)

where \(w_c \) is the weighted coefficient.

It should be emphasized that the background mesh is just necessary for integration, and NOM does not require the FE shape function derivatives. As a result, the shape functions of low-order elements are adequate for solving higher-order PDEs. The support domain of each integration point in the higher-order 'numerical integration-based' NOM is established by neighboring nodes instead of the integration points. The node-set acts as an approximation scheme for each Gauss point. However, dual-support is not necessary for integration points because they do not support any other nodes.

3. Applications of NOM for solving PDEs

3.1. Maxwell’s equations

Maxwell’s equations (Tab. 1) [154]-[158] are a set of coupled partial differential equations that lay the basis of classical electromagnetism, optics and electromagnetism. They describe how charges, currents and field changes create electric and magnetic fields.

Maxwell electromagnetic waveguide problems have been solved by many computational methods such as FEM [159], the method of moments [160], time domain finite difference method [161], ray theory [162], meshless/meshfree methods [163, 164], asymptotic-expansion methods [165] and eigen expansion method [166]. Rabczuk et al. [140] first proposed a NOM based on the variational principle for Maxwell electromagnetic waveguide problems as shown in Fig. 3 and Tab. 2.

The nonlocal formulation facilitates the assembly of the tangent stiffness matrix, which is critical for the waveguide problem’s eigenvalue analysis. Case 2 has a frequency inaccuracy of less than 4%. The numerical and theoretical results are in good agreement.

3.2. Nonhomogeneous biharmonic equation

The biharmonic equation [167]-[170] is a fourth-order PDE important for instance for plate/shell theory [171]-[175]. It is particularly useful in
Tab. 1: Maxwell’s equations in SI units form [158, 159].

<table>
<thead>
<tr>
<th>Name</th>
<th>Integral equations</th>
<th>Differential equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss’s law</td>
<td>$\int_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\epsilon_0} \iint_{\Omega} \mathbf{p} dV$</td>
<td>$\nabla \cdot \mathbf{E} = \frac{\mathbf{p}}{\epsilon_0}$</td>
</tr>
<tr>
<td>Gauss’s law for magnetism</td>
<td>$\int_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0$</td>
<td>$\nabla \cdot \mathbf{B} = 0$</td>
</tr>
<tr>
<td>Faraday’s law of induction</td>
<td>$\int_{\partial \Sigma} \mathbf{E} \cdot d\ell = -\frac{d}{dt} \iint_{\Sigma} \mathbf{B} \cdot d\mathbf{S}$</td>
<td>$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$</td>
</tr>
<tr>
<td>(Faraday’s law of induction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxwell-Faraday equation (Faraday’s law of induction)</td>
<td>$\int_{\partial \Sigma} \mathbf{B} \cdot d\ell = \mu_0 \left(\iint_{\Sigma} \mathbf{J} \cdot d\mathbf{S} + \epsilon_0 \frac{d}{dt} \iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S} \right)$</td>
<td>$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$</td>
</tr>
<tr>
<td>Ampère’s circuital law (with Maxwell’s addition)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3: The setup of rectangular waveguide (a), the discretizations for two cases (b-c); the TE modes for case 1(d-f) and case 2(g-i) [140].

modeling thin structures. It can be written as the biharmonic or bilaplacian operator. It can be expressed in n dimensions Cartesian coordi-

$$\nabla^4 w = 0$$

where ∇^4 is the fourth order ∇ operator and the square of the Laplacian operator ∇^2 (or Δ) is
Tab. 2: Comparison of f_{cmn} between NOM results and exact results [140].

<table>
<thead>
<tr>
<th>Mode</th>
<th>TE_{10} (GHz)</th>
<th>TE_{20} (GHz)</th>
<th>TE_{01} (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>6.02(-8.29%)</td>
<td>12.33(-5.28%)</td>
<td>15.08(3.13%)</td>
</tr>
<tr>
<td>Case 2</td>
<td>6.30(-3.96%)</td>
<td>12.67(-2.67%)</td>
<td>14.91(1.88%)</td>
</tr>
<tr>
<td>Exact</td>
<td>6.56</td>
<td>13.02</td>
<td>14.63</td>
</tr>
</tbody>
</table>

Fig. 4: The NOM results to solve the nonhomogeneous biharmonic equation [141].

\[
\nabla^4 w = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_i \partial_j \partial_i \partial_j w
= \left(\sum_{i=1}^{n} \partial_i \partial_i \right) \left(\sum_{j=1}^{n} \partial_j \partial_j \right) w
\quad \text{(34)}
\]

With the aid of nonlocal Hessian operator $\tilde{\nabla}^2 w$ and its variation $\tilde{\nabla}^2 \delta w$, Ren et al. [141] used the NOM to solve the nonhomogeneous biharmonic equation for a simply supported square plate subjected to uniform loading as shown in Fig. 5, which shows the accuracy of NOM.

3.3. Schrödinger equation

The Schrödinger equation [176]-[180] is a linear partial differential equation that regulates a quantum-mechanical system’s wave function. The Schrödinger equation for a one-dimensional harmonic oscillator is given by

\[
\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \phi(x,t) = i\hbar \frac{\partial}{\partial t} \phi(x,t),
\]

\[
V(x) = \frac{1}{2} \omega^2 x^2
\quad \text{(35)}
\]

where $\phi(x,t)$ denotes a wave function. The parameter m indicates the particle’s mass, and
V(x) denotes the potential that reflects the particle’s surroundings. By using NOM, Ren et al. [141] tested the accuracy of the eigenvalue problem based on the first-order nonlocal operators; the convergence plot of the error is shown in Fig. 5.

3.4. Poisson equation

Poisson’s equation [181]-[184] is an elliptic partial differential equation with widespread use in theoretical physics. The solution to Poisson’s equation, for instance, is the potential field created by a particular electric charge or mass density distribution; once the potential field is known, the electrostatic or gravitational (force) field may be calculated. Poisson’s equation is given by

$$\Delta \rho^* = f$$

where \(f\) and \(\rho^*\) represent real or complex-valued functions on a manifold. Typically, \(f\) is provided and \(\rho^*\) is requested. When the manifold is in Euclidean space, the Laplace operator is typically represented as \(\nabla^2\), and Poisson’s equation is commonly written as

$$\nabla^2 \rho^* = f$$

It has the following form in 3D Cartesian coordinates:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \rho^*(x, y, z) = f(x, y, z)$$

Numerical results of the Poisson equation by the NOM are found in Fig. 6 [141]. Ren et al. [142] also solved the Poisson equation with dimensional number \(n = (2, 3, 4, 5)\) under various discretization and order of nonlocal operator, with the statistical findings provided in Tab. 3.

3.5. Föppl–von Kármá equations

The Föppl-von Kármá equations [185, 186] are a set of nonlinear partial differential equations that describe the – large – deflections of thin plates [187]. They are given by [188]:

$$\frac{Eh^3}{12(1-\nu^2)} \nabla^4 w - h \frac{\partial}{\partial x_\beta} \left(\sigma_{\alpha\beta} \frac{\partial w}{\partial x_\alpha} \right) = P$$

$$\frac{\partial \sigma_{\alpha\beta}}{\partial x_\beta} = 0$$
Tab. 3: The NOM results for different dimensional Poisson equations [142]

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Nnode</th>
<th>Δx</th>
<th>L_2 norm</th>
<th>$\frac{\text{u}{\text{max}}}{\text{u}{\text{exact}}}$</th>
<th>-1</th>
<th>p-order</th>
<th>p^{hg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1681</td>
<td>0.025</td>
<td>0.0485</td>
<td>-0.0281</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1681</td>
<td>0.025</td>
<td>0.0262</td>
<td>0.01</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1681</td>
<td>0.025</td>
<td>0.0139</td>
<td>-0.00256</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1681</td>
<td>0.025</td>
<td>0.0175</td>
<td>-0.00308</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6561</td>
<td>0.0125</td>
<td>0.0379</td>
<td>0.033</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6561</td>
<td>0.0125</td>
<td>0.0179</td>
<td>0.0714</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6561</td>
<td>0.0125</td>
<td>0.0111</td>
<td>0.00505</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25921</td>
<td>0.00625</td>
<td>0.0202</td>
<td>0.0221</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25921</td>
<td>0.00625</td>
<td>0.00501</td>
<td>0.00266</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25921</td>
<td>0.00625</td>
<td>0.00191</td>
<td>-0.000417</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40401</td>
<td>0.005</td>
<td>0.00777</td>
<td>-0.00263</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160801</td>
<td>0.0025</td>
<td>0.00291</td>
<td>0.0007</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10648</td>
<td>0.04763</td>
<td>0.0907</td>
<td>-0.0406</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10648</td>
<td>0.04763</td>
<td>0.0907</td>
<td>-0.0406</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68921</td>
<td>0.025</td>
<td>0.0485</td>
<td>-0.02</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14641</td>
<td>0.1</td>
<td>0.169</td>
<td>-0.0514</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65536</td>
<td>0.0667</td>
<td>0.118</td>
<td>-0.0171</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160000</td>
<td>0.0526</td>
<td>0.0983</td>
<td>-0.0203</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>810000</td>
<td>0.0345</td>
<td>0.0579</td>
<td>0.00304</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2560000</td>
<td>0.0256</td>
<td>0.0454</td>
<td>0.00152</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7776</td>
<td>0.2</td>
<td>0.229</td>
<td>-0.114</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>0.111</td>
<td>0.181</td>
<td>-0.0944</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1048576</td>
<td>0.0667</td>
<td>0.13</td>
<td>-0.0485</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4084101</td>
<td>0.05</td>
<td>0.0985</td>
<td>-0.0352</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where h denotes the plate thickness, w the out-of-plane deflection of the plate, P the external normal force, σ the Cauchy stress tensor and α, β are indices (the two orthogonal in-plane directions). The biharmonic operator in 2D is defined as

$$\nabla^4 w := \frac{\partial^2}{\partial x_\alpha \partial x_\alpha} \left[\frac{\partial^2 w}{\partial x_\beta \partial x_\beta} \right]$$

$$= \frac{\partial^4 w}{\partial x_1^4} + \frac{\partial^4 w}{\partial x_2^4} + 2 \frac{\partial^4 w}{\partial x_1^2 \partial x_2^2}$$

(41)

Figure 7 illustrates the NOM solution with an ABAQUS solution based on S4R plate elements [142, 189].

3.6. Cahn-Hilliard equation

The Cahn-Hilliard equation [190]-[194] describes the process of phase separation, which occurs when two components of a binary fluid spontaneously separate and form domains in each component. If c is the fluid concentration, and $c = \pm 1$ represents domains, the equation is written as

$$\frac{\partial c}{\partial t} = D \nabla^2 (c^3 - c - \gamma \nabla^2 c)$$

(42)

where D is the diffusion coefficient and $\sqrt{\gamma}$ is the length of the transition areas between the domains. The partial time derivative is $\partial / \partial t$, while the Laplacian in n dimensions is ∇^2. Furthermore, the number $\mu = c^3 - c - \gamma \nabla^2 c$ denotes the chemical potential.
3.7. Incompressible neo-Hookean model

The neo-Hookean model [195] is common used to model plastics and rubber-like material. The strain energy for the virtually incompressible Neo-Hooke material [196] can be written as

$$\mathcal{F}(\mathbf{F}) = \frac{1}{2}K(J-1)^2 + \frac{1}{2}\mu(\mathbf{F} : \mathbf{F} - 3). \quad (43)$$

where \mathbf{F} is the deformation gradient, $J = \det \mathbf{F}$.

The nearly incompressible neo-Hookean model has been solved by NOM with Newton–Raphson iteration method, in [142] and agrees well with FE results, see Fig. 12 and Tab. 4.

Tab. 4: Nearly incompressible 3D model: displacement w_{max} (mm)[142]

<table>
<thead>
<tr>
<th>Method/Element type</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM (H1 element)</td>
<td>13.17 (8³ mesh)</td>
<td>19.52 (32³ mesh)</td>
</tr>
<tr>
<td>FEM (H2 element)</td>
<td>19.54 (8³ mesh)</td>
<td>20.01 (32³ mesh)</td>
</tr>
<tr>
<td>NOM (node)</td>
<td>19.14 (11³ nodes)</td>
<td>20.43 (21³ nodes)</td>
</tr>
</tbody>
</table>

3.8. Gradient elasticity solid problem

Gradient elasticity theory can be traced back to the Cosserat theory [198]. The Cosserat theory is based on higher-order gradients. Numerous gradient elasticity theories were developed including micro-polar solid [198], couple stress theory [199]-[201], Mindlin solid theory [202, 203], nonlocal elasticity [204] and second-grade materials [205]. To address gradient elasticity problems, a variety of theoretical solutions [206]-[210] and numerical methods [211]-[223] have been developed. The isotropic elasticity gradient material’s energy functional [207, 210] can be represented as

$$\mathcal{W} = \int_{\Omega} \frac{1}{2} \sigma : \varepsilon + \frac{l^2}{2} \nabla \sigma : \nabla \varepsilon \, d\Omega - \int_{\Omega} b \cdot ud\Omega$$
$$- \int_{\partial \Omega} p \cdot udS - \int_{\partial \Omega} R \cdot (n^\ast \cdot \nabla u) dS \quad (44)$$

where σ refers to the Cauchy-like stress tensor, l is the gradient material factor, $\varepsilon = \ldots$
\(\frac{1}{2} (\nabla u + u \nabla) \), whereas \(P \) and \(R \) represents the traction force and double traction force acting on \(\partial \Omega \).

The lower gradient elasticity problem based on either the Lagrange multipliers or modified variational principle to enforce the boundary conditions has been solved by the NOM in [143], see Fig. 13. Ren et al. [145] derived the governing equations for the higher-order gradient solid, and developed a NOM and applied it finally to the higher-order gradient solid examples. The numerical tests are consistent with the numerical analysis by FEM [224] and IGA [221], which demonstrate the capability of the NOM in solving higher-order gradient elasticity problems as shown in Fig. 14 and Fig. 15.

3.9. Phase field fracture modeling

Phase-field models for fracture as presented in [225]-[229] introduce an additional field to describe the damage status of a material point. The evolution of the damage is obtained by solving an additional differential equation. Miehe et al. [225] define the fracture surface density per unit volume of the solid as

\[
\Lambda(\phi, \nabla \phi) = \frac{\phi^2}{2l_0} + \frac{l_0}{2} \nabla \phi \cdot \nabla \phi \quad (45)
\]

where the phase field \(\phi = 1 \) denotes a totally cracked/damaged material, while \(\phi = 0 \) represents the intact material; \(l_0 \) is a parameter. The phase field energy functional, according to Bour-
\[\Pi(u, \phi, \Lambda) = \int_\Omega G_c \Lambda(\phi, \nabla \phi) d\Omega + \int_\Omega \psi_e(\varepsilon(u), \phi) d\Omega - \int_\Omega b \cdot u d\Omega - \int_{\partial\Omega} f \cdot u dS \]

(46)

where \(G_c \) denotes the critical energy release rate \(\Lambda(\phi) \) and \(l_0 \) is a length scale parameter. The displacement field and elastic energy density are indicated by \(u \) and \(\psi_e \), respectively; the phase field \(\phi(x, t) \in [0, 1] \), smears the crack surface over a specific domain. The elastic energy is decomposed into tensile and compressive components to ensure that fracture occurs exclusively under tension [230]. The strain tensor \(\varepsilon \) can be split using the eigen-decomposition as follows:

\[\varepsilon_+ = \sum_{a=1}^{b} \langle \varepsilon_a \rangle + n_a \otimes n_a, \]

\[\varepsilon_- = \sum_{a=1}^{b} \langle \varepsilon_a \rangle - n_a \otimes n_a \]

(47)

where \(\varepsilon_+ \) and \(\varepsilon_- \) are the tensile and compressive components of the strain tensor, respectively. The principal strain is \(\varepsilon_a \) and its direction \(n_a \). \(\psi_e \) is separated into two parts to distinguish between the material’s tensile and compressive strengths: the tensile component affected by the phase field and the compressive component that is independent of the phase field.

\[\psi_e(\varepsilon(\nabla u), \phi) = [(1 - \phi)^2 + \kappa_0] \psi_e^+(\varepsilon(\nabla u)) + \psi_e^-(\varepsilon(\nabla u)) \]

(48)

Fig. 9: The evolution of the Cahn-Hilliard phase field model for domain with round internal BCs using NOM [144].
where κ_0 ($\kappa_0 > 0$ and $\kappa_0 \ll 1$) denotes a small positive factor. The phase field governing equations are written as

\[
\begin{aligned}
\nabla \cdot \sigma + b &= 0 \\
G_e (\phi - l^2 \nabla^2 \phi) &= 2l(1 - \phi) H
\end{aligned}
\]

(49)

where $H(x, T) := \max_{t \in [0,T]} \psi(x,t)$ [226]; σ is the Cauchy stress. The phase field model has been implemented using FEMs or IGA [231, 226, 232, 233, 234, 23] and in NOM in [147, 148], see Fig. 16 and Fig. 17.

4. Future perspectives of NOM

Although NOM has been successfully used to solve various PDEs, the majority of the issues that have been addressed are limited to continuous problems as summarized in Tab. 5. Other potential NOM applications still remain unexplored and can be found in Tab. 6. They could exploit the higher-order continuity of NOM and its ease in implementation. Since NOM can be considered as an extension of PD, it can also exploits PD’s ability to naturally deal with discrete material failure and fracture.
Fig. 11: The early-stage 6th-order CH equation phase field model vs ℓ [144].

Fig. 12: (a) Setup of the model; (b)-(d) z-direction displacement in deformed configuration [142].
Fig. 13: (a) setup and mesh of the plate; (b) numerical integration scheme; (c-d) u_r and u_θ on $r = a$ for various gradient coefficient l [143].
Fig. 14: (a) Setup of the plate; (b)-(e) Displacement in x-direction with deformation for E^1, E^2, E^3 and E^4 elasticity [145].
Fig. 15: (a)-(d) The derivative of deformation of all points on the right line for $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial x \partial y}$ and $\frac{\partial^2 u}{\partial y^2}$ [145].

Tab. 5: Successful NOM applications

<table>
<thead>
<tr>
<th>Successful NOM applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Electromagnetic waveguide problems [140]</td>
</tr>
<tr>
<td>• 1D Schrödinger equation [141, 142]</td>
</tr>
<tr>
<td>• Poisson equation [141, 142]</td>
</tr>
<tr>
<td>• Von Kármán equations for a thin plate [142]</td>
</tr>
<tr>
<td>• Nonhomogeneous biharmonic equation [142]</td>
</tr>
<tr>
<td>• Nearly incompressible block [142]</td>
</tr>
<tr>
<td>• Gradient elasticity problems [143]</td>
</tr>
<tr>
<td>• Cahn-Hilliard phase field model [144]</td>
</tr>
<tr>
<td>• Finite deformation higher-order gradient elasticity [145]</td>
</tr>
<tr>
<td>• Quasi-static and dynamic fracture modeling [147, 148]</td>
</tr>
</tbody>
</table>

5. Conclusions

In this paper, we reviewed developments of the NOM, a novel approach to solve PDEs and challenging problems in engineering. Three NOM versions have been proposed so far: first-order/higher-order particle-based NOM and higher-order ‘numerical integration-based’ NOM. The first version NOM is based on common nonlocal operators. These nonlocal operators employ the first-order of the TSE. The operator energy functional is introduced
Fig. 16: (a) Geometry and boundary conditions; phase field (b-d) evolution process for $l_0 = 0.0375$ mm in tension test; phase field (e-g) evolution process for $l_0 = 0.015$ mm in shear test [147].
Fig. 17: Reaction force-displacement curves in tension (a)/shear (b) test [147].

Tab. 6: Future NOM applications

<table>
<thead>
<tr>
<th>Future NOM applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Material nonlinearities including plasticity, viscoelasticity and viscoplasticity.</td>
</tr>
<tr>
<td>• Multi-physics problems (coupled thermo-mechanical, electro-mechanical, electro-chemical problems to name a few) exploiting the ease in implementation.</td>
</tr>
<tr>
<td>• Plate and shell problems, especially higher-order theories or theories of thin plate/shell analysis exploiting the higher-order continuity of NOM. When NOM is applied to a curvilinear coordinate system, it is also viable to handle shell problems.</td>
</tr>
<tr>
<td>• Higher order gradient (elastoplasticity) problems exploiting the higher-order continuity of NOM.</td>
</tr>
<tr>
<td>• Finite strain and/or large deformation problems exploiting the ‘meshfree character’ of NOM.</td>
</tr>
<tr>
<td>• The wave propagation analysis of gradient elasticity problems and studying – in this context – interesting phenomena like size, surface and nonlocal effects.</td>
</tr>
<tr>
<td>• Modeling of discontinuities as they occur in fracture/crack propagation in solids, fluid-structure interaction or fluid mechanics such as two-phase flow.</td>
</tr>
<tr>
<td>• Higher-order PDEs on stationary and evolving surface exploiting the higher-order continuity of NOM including its ease in implementation.</td>
</tr>
</tbody>
</table>

to eliminate the zero-energy model. The first version of NOM is appropriate for C^0 continuity problems such as solid mechanics and phase-field fracture models. The second version of NOM generalizes the first version of NOM by employing a higher-order TSE. Higher-order TSE can provide arbitrary order partial derivatives in any dimension. These higher-order derivatives are appropriate for higher-order PDEs as required in some plate theories or strain gradient solid mechanics. Higher-order NOM considerably improves NOM’s capacity to solve more complex issues. The third version of NOM employs accurate numerical integration. The boundary conditions of various orders can be accurately applied as combined with the Lagrange multiplier or modified variational principle. NOM has been successfully applied to the solutions of various lower-order and higher-order PDEs. The nonlocal operators for a given energy function can be constructed automatically using the highest order of partial derivative and spacial dimensions, and NOM can also be utilized to derive the nonlocal strong form based on variational principles. The NOM obtains the residual and tangent stiffness matrix simply and efficiently. In the near future, the power of NOM in deriving nonlocal models remains largely unexplored. NOM will be applied to the solutions for many
complicated physical PDEs problems, such as gradient plate problems, higher order gradient (elastoplasticity) problems, higher-order PDEs on the stationary and evolving surfaces to name only a few.

Acknowledgments

The financial support provided by China Scholarship Council is gratefully acknowledged.

References

© 2022 Journal of Advanced Engineering and Computation (JAEC)

About Authors

Yongzheng ZHANG is currently a PhD candidate at the Institute of Structural Mechanics, Bauhaus-University Weimar, Germany. He received his Bachelor degree in Hydraulic and Hydro-Power Engineering in 2014, and Master degree in Geotechnical Engineering in 2017. His research interests are focused on nonlocal operator method, partial differential equations, peridynamics, finite element method and meshless methods.

Huilong REN is currently a research assistant in the department of Mathematics and Physics, Leibniz Hannover University of Hannover City, Germany. He received his B.S degree in Civil Engineering from the Chongqing University of China in 2011, and M.S degree in Civil Engineering from Tongji University of Shanghai City, China in 2014. He received a Ph.D. degree in Civil Engineering from Bauhaus University, Weimar of Germany in 2021. His research interest includes nonlocal operator methods, numerical methods and automatic programming.

Timon RABCZUK is currently professor at the Bauhaus University Weimar. He has received his PhD at University of Karlsruhe in 2002.