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Abstract. This paper explores a free vibration
analysis of functionally graded triply periodic
minimal surface plates using a first order shear
deformation theory in conjunction with moving
Kriging meshfree method. The FG-TPMS plates
are modeled the same as porous structures with
three different patterns (Primitive, Gyroid, and
wrapped package-graph) and six different vol-
ume distributions for each pattern. Employing
a fitting method based on a two-phase piece-wise
function, the mechanical properties of the FG-
TPMS plates are determined. The governing
equations for the FG-TPMS plates are estab-
lished using the virtual work principle and sub-
sequently solved using the moving Kriging mesh-
free method. The study encompasses FG-TPMS
square and circular plate, examining the natural
frequency of the FG-TPMS plates with various
length-to-thickness ratios, TPMS types, volume
distributions, and boundary conditions.

Keywords: First order shear deformation
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1. Introduction

In recent years, conventional cellular structures
like honeycombs, lattice structures, and foam
materials have been extensively studied for their
mechanical properties [1, 2]. Minimal surfaces,
which have zero average curvature, have at-
tracted interest in research communities. Triply
periodic minimal surface structures, which are
characterized by smooth and continuous sur-
faces derived from mathematical methods, have
zero mean curvatures at every point. Various
TPMS structures including Primitive, Gyroid,
and IWP can be generated using different math-
ematical models [3]. Additive manufacturing
technology has emerged as a promising approach
for fabricating TPMS structures, enabling re-
searchers to explore their mechanical character-
istics. Numerical simulations and experimental
studies have been conducted to investigate de-
formation processes and energy absorption per-
formance of TPMS structures produced through
additive manufacturing technology [4].

To enhance the mechanical properties of
TPMS structures, various types of FG-TPMS
structures have been introduced in recent stud-
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ies. These structures include the hybridization
of different unit cell geometries [5] and gradient
volume fraction [6,7]. Researchers have designed
FG structures by incorporating z-value terms
into the formulas, resulting in gradient Primitive
and Gyroid structures [3, 8]. The FG structures
based on TPMS solely along the z-axis have
been manufactured, demonstrating improved
energy absorption capacity compared to uni-
form structures [9]. Different types of FG-TPMS
structures [10] have been investigated, reveal-
ing a combination of stretching- and bending-
dominated deformations. Deformation behav-
iors of one-dimensional FG-Primitive structures
have been studied under various loading direc-
tions, indicating superior energy absorption ca-
pability only when the loading and the gradi-
ent directions are parallel [11]. On the other
hand, an analysis of the biological and mechan-
ical properties of graded porous scaffolds based
on refined Primitive and Gyroid, Diamond, and
IWP TPMS types was conducted by Ma et al.
[12]. Wang et al. [13] guided an assessment of
the mechanical properties, morphology, perme-
ability, and cell growth of gradient TPMS struc-
tures. The failure mechanism of Gyroid struc-
tures under compressive loadings, identifying
the formation of shear bands as the major failure
mechanism was investigated by Keshavarzan et
al. [14]. Afshar et al. [15] explored the deforma-
tion mechanism of TPMS with graded porosi-
ties, revealing that stretching-dominated struc-
tures exhibited superior mechanical properties
compared to bending-dominated structures. Qiu
et al. [16] introduced mechanical properties of
three-dimensional FG-TPMS structures. More-
over, the free vibration and buckling analyses of
FG-TPMS beams were performed by Viet and
Zaki [17]. Specially, Nguyen-Xuan et al. [18] de-
veloped a higher order shear deformation model
for FG-TPMS plates by using a fitting tech-
nique. In addition, by using the same model,
an analysis of FG-TPMS microplates based on
the modified couple stress theory was performed
in [19].

This study aims to develop the moving Krig-
ing meshfree method based on FSDT for FG-
TPMS plates. The obtained results are com-
pared to the reference results [18], which used
isogeometric analysis (IGA) and HSDT. Be-

sides, IGA successfully applied to multi-physics
problems [20–23]. A comparison between the
two methods reveals several advantages of the
present method: (i) The meshfree approximate
functions are constructed directly using nodal
data in global Cartesian coordinates, so the
present method is good for the complex geome-
try; (ii) displacement and stresses can be com-
puted directly at arbitrary points in physical
space, avoiding the need for calculations in natu-
ral coordinates as in IGA. Furthermore, bound-
ary conditions are enforced directly at nodes,
similar to finite element method, instead of em-
ploying penalty methods or Lagrange multipli-
ers used in other meshfree methods. The mov-
ing Kriging meshfree method was firstly pro-
posed and developed by Gu [24] to apply the 2-
dimesional problem. Subsequently, this method
has been further developed and successfully uti-
lized for the analysis of plates [25–31] and mi-
croplates [32–34].

2. Basic equations

2.1. Mechanical properties of
FG-TPMS materials

Three types of FG-TPMS plate models can be
considered: Primitive, Gyroid, and I-graph and
wrapped package-graph (IWP), as plotted in
Figure 1. The TPMS geometry defines the char-
acteristics of the sheet-based solid type as fol-
lows [18]

Fig. 1: Based on pattern I, three different types of FG-
TPMS plates [18].
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Primitive Ξ = cos (ω1x) + cos (ω2y) + cos (ω3z)

Gyroid Ξ = sin (ω1x) cos (ω2y) + sin (ω2y) cos (ω3z) + sin (ω3z) cos (ω1x)

IWP Ξ = 2 (cos (ω1x) cos (ω2y) + cos (ω2y) cos (ω3z) + cos (ω3z) cos (ω1x))

− (cos (2ω1x) + cos (2ω2y) + cos (2ω3z))

(1)
where

ωi =
2πni
li

, i = 1, 2, 3 (2)

in which is the number of unit cell and is their
lengths. This research uses the fitting curve
model reported in [18] that describes the volume
ratio as follows

V =
V TPMS

V m
(3)

where V TPMS is the total volume of TPMS cells
and V m is the base material. Additionally, the
volume ratio function can be described by

V =

{
(Vmax − Vmin)

(
z
h + 1

2

)n
+ Vmin Pattern I

(Vmax − Vmin)
(
1− cos

(
πz
h

))n
+ Vmin Pattern II

(4)

2.2. Kinematics of plate

Based on FSDT, the displacement fields of an
arbitrary point positioned on the plate can be
written by

û (x, y, z) = u1 (x, y) + zu2 (x, y) (5)

where

û =

 û
v̂
ŵ

 ;u1 =

 u
v
w

 ; u2 =

 ψx

ψy

0


(6)

in which u, v and w are the in-plane and trans-
verse displacements, respectively; ψx and ψy are
two rotations of the y-z, x-z planes, respectively.

Bending and shear strain components are de-
fined as

εεε =
{
εxx εyy γxy

}T
= εεε1 + zεεε2

γγγ =
{
γxz γyz

}T
= εεεs

(7)

where

εεε1 =

 u,x
v,y

u,y + v,x

 ;εεε2 =

 ψx,x

ψy,y

ψx,y + ψy,x


εεεs =

{
w,x + ψx

w,y + ψy

}
(8)

A constitutive equation for linear elasticity
solids under plane stress is given by

σxx
σyy
τxy
τxz
τyz

 =


E

1−(ν)2
νE

1−(ν)2
0 0 0

νE
1−(ν)2

E
1−(ν)2

0 0 0

0 0 G 0 0
0 0 0 G 0
0 0 0 0 G




εxx
εyy
γxy
γxz
γyz


(9)

where E , G and v are the Young’s modulus,
shear modulus and Poisson’s ratio of FG-TPMS
materials, respectively.

The values in Table 1 are calculated and listed
based on the fixed data model [18].

Tab. 1: Mechanical properties of FG-TPMS materials

TPMS Mechanical properties V

E = Em

{
0.317V 1.264

1.007V 2.006 − 0.007
V ≤ 0.25
V > 0.25

Primitive G = Gm

{
0.705V 1.189

0.953V 1.715 + 0.047
V ≤ 0.25
V > 0.25

v =

{
0.314e−1.004V + 0.119

0.152V 2 − 0.235V + 0.383
V ≤ 0.55
V > 0.55

E = Em

{
0.596V 1.467

0.962V 2.351 + 0.038
V ≤ 0.45
V > 0.45

Gyroid G = Gm

{
0.777V 1.544

0.973V 1.982 + 0.027
V ≤ 0.45
V > 0.45

v =

{
0.192e−1.349V + 0.202

0.402V 2 − 0.603V + 0.501
V ≤ 0.50
V > 0.50

E = Em

{
0.597V 1.225

0.987V 1.782 + 0.013
V ≤ 0.35
V > 0.35

IWP G = Gm

{
0.529V 1.287

0.960V 2.188 + 0.040
V ≤ 0.35
V > 0.35

v =

{
2.597e−0.157V − 2.244

0.201V 2 − 0.227V + 0.326
V ≤ 0.13
V > 0.13

The governing equations for free vibration
analysis are expressed as follows∫
Ω
δε̄εεTQbε̄εεdΩ +

∫
Ω
δT (ε̄εεs)

T
Qsε̄εεsdΩ +

∫
Ω
δūT I0̈̄udΩ = 0

(10)
where ¨̄u is acceleration and

ε̄εε =

{
εεε1

εεε2

}
;Qb =

[
Ab Bb

Bb Db

]
;Ds =

∫ h/2

−h/2

Csdz

(
Ab,Bb,Db

)
=

∫ h/2

−h/2

(
1, z, z2

)
Cbdz

Cs =

[
G 0
0 G

]
; (I1, I2, I3) =

h/2∫
−h/2

ρTPMS
(
1, z, z2

)
I3x3dz

Cb =


E

1−(ν)2
νE

1−(ν)2
0

νE
1−(ν)2

E
1−(ν)2

0

0 0 G

 ; ū =

{
u1

u2

}
; I0 =

[
I1 I2
I2 I3

]
(11)

where ρ = ρm × V , in which ρm is the mass
density of base material; I3×3 is the unit matrix.
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2.3. Moving Kriging
interpolation shape
function for FG-TPMS
plates

The mid-plane surface domain of the plate (Ω)
can be discretized by a set of nodes xI(I =
1, .., N), in whichN is the total number of nodes,
the displacement field is interpolated by based
on a set of nodes

uh (x) =

N∑
I=1

I5×5NI (x)qI (12)

where qI =
{
uI vI wI ψxI ψyI

}T is de-
grees of freedom (DOFs) of node I; I5×5 is the
unit matrix of 5x5; NI (x) is the moving Kriging
interpolation shape function, which is defined as
follows

NI(x) = pT(x)A+ rT(x)B =
m∑
j=1

pj(x)AjI +
n∑

k=1

rk(x)BkI

(13)
in which m and n denote the order of the poly-
nomial basic function and the number of nodes
in support domain, respectively.

Additionally, components of p(x), r(x), A and
B are formulated by

p (x) =
[
p1 (x) p2 (x) · · · pm (x)

]T
r (x) =

[
R (x1,x) R (x2,x) · · · R (xn,x)

]T
A =

(
PTR−1P

)−1
PTR−1; B = R−1 (I−PA)

(14)
where I is a unit matrix of size n× n , and

P (x) =

 p1 (x1) · · · pm (x1)
...

. . .
...

p1 (xn) · · · pm (xn)


R (x) =

 R (x1,x1) · · · R (x1,xn)
...

. . .
...

R (xn,x1) · · · R (xn,xn)


(15)

Components of p (x) and R (xi,xj) can be de-
scribed by

p (x) =

 1 x y x2 xy y2︸ ︷︷ ︸
m=6


T

R (xi,xj) = exp

{
−
(

η
dc

∥xi − xj∥
)2

}
(16)

where η is a correlation parameter ( η = 1) [28],
dc is the average distance of nodes. And the
support domain size of meshfree approximation
was investigated in [35].

By substituting Eq. (12) into Eq. (8), bend-
ing and shear strains can be formulated by

ε̄εε =
{
εεε1 εεε2

}T
=

N∑
I=1

{
B1

I B2
I

}T
qI =

N∑
I=1

B̄b
IqI

εεεs =
N∑

I=1

Bs
IqI

(17)
where

BI
1 =

 NI,x 0 0 0 0
0 NI,y 0 0 0

NI,y NI,x 0 0 0


BI

2 =

 0 0 0 NI,x 0
0 0 0 0 NI,y

0 0 0 NI,y NI,x


BI

s =

[
0 0 NI,x NI 0
0 0 NI,y 0 NI

]
(18)

According to Eq. (6), the displacement field is
also described by

ū =
{

u1 u2
}T

=

N∑
I=1

{
Bu1

I Bu2
I

}T
qI =

N∑
I=1

B̄u
IqI

(19)
in which

BI
u1 =

 NI 0 0 0 0
0 NI 0 0 0
0 0 NI 0 0


BI

u2 =

 0 0 0 NI 0
0 0 0 0 NI

0 0 0 0 0

 (20)

Finally, governing discrete equations for free
vibration analysis of FG-TPMS plates are
rewriten by inserting Eqs. (17) and (19) into
Eq. (10) by (

K− ω2M
)
q̄ = 0 (21)

240 © 2023 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 7 | ISSUE: 4 | 2023 | December

where K and M respectively are the global stiff-
ness matrix and mass matrix that are defined
by

K =
∫
Ω

(
B̄b

)T
QbB̄bdΩ +

∫
Ω

(
B̄s

)T
QsB̄sdΩ

M =
∫
Ω

(
B̄u

)T
I0B̄

udΩ;q = q̄eiωt

(22)
where ω is the natural frequency; q̄ is shape
modes.

3. Numerical validation

This section explores numerical examples for
each FG-TPMS plate type, considering six dis-
tinct volume distribution scenarios with the cor-
responding parameters as defined by Eq. (4) and
summarized in Table 2. To execute the essential
integration for the current meshfree approach,
three-node triangular cells are utilized, and inte-
gration points (3×3) of the Gaussian quadrature
rule are employed for each triangular cell. The
properties of the base materials are adopted by
Em = 200GPa, ρm = 8000kg/m3 and vm = 0.3.

3.1. Square plate

Firstly, an FG-TPMS square plate of length
a and thickness h is analyzed under simply
supported (SSSS) and fully clamped (CCCC)
boundary conditions. The natural frequency

of plate is normalized by ω̄ =
(

ω2a4ρmh
D

)1/4

,

in which D = Emh3

12(1−(vm)2)
. Table 3 presents

the normalized natural frequency of the simply
supported FG-TPMS square plate discretized
by 498 nodes, corresponding to various TPMS
modeled types and volume distribution patterns.
These results are compared to those obtained by
Nguyen-Xuan et al. [18] using HSDT (5 degrees
of freedom (DOFs)) combined to isogeometric
analysis. The numerical results are shown in
good agreement with the reference values. The
findings reveal that the initial non-dimensional
natural frequency of Functionally Graded Triply
Periodic Minimal Surface (FG-TPMS) square
plates exhibits an ascending trend, progressing
from the Gyroid type to the Primitive and IWP
types in Pattern I. Similarly, in Pattern II, the

trend shifts from Gyroid to IWP and then to
Primitive types. Additionally, these frequen-
cies rise proportionally with an increase in the
length-to-thickness ratio and decline when tran-
sitioning from clamped (CCCC) to simply sup-
ported boundaries.

Tab. 2: Various volume distribution patterns with
Vaverage = 0.35 [18]

Parameter I1 I2 I3 II1 II2 II3
n 1.0 3.0 6.5 0.561 1.757 3.943

Vmin 0.2 0.2 0.25 0.1 0.20 0.25
Vmax 0.5 0.8 1.0 0.5 0.8 1.0

3.2. Annular plate

An FG-TPMS annular plate with two circles
of radii Rin = 0.25 and Rout = 1 is consid-
ered respectively. The plate is subjected to fully
clamped conditions at the outer boundary. For
the case of Rin = 0, the annular plate becomes
a circular plate. Figure 2 shows the node distri-
bution of FG-TPMS annular and circular plates.
The non-dimensional natural frequency is cal-
culated using the formula by Nguyen-Xuan et
al. [18] (Ω̄ = ωR2

out

√
ρmh/D). Table 4 gives the

first non-dimensional natural frequency of fully
clamped FG-TPMS circular plate with different
ratios of Rout/h. The obtained results are com-
pared to the reference ones in [18]. The results
obtained are in close agreement with the refer-
ence results, showing only minor discrepancies
that are not considered significant.

Table 5 presents the first non-dimensional nat-
ural frequency of fully clamped FG-TPMS annu-
lar plates under various radius-to-thickness ra-
tios, TPMS types, and volume distribution pat-
terns. These results can serve as reference values
in future studies, as they are not yet available
in the literature. The dominant pattern for the
largest natural frequency in fully clamped Func-
tionally Graded Triply Periodic Minimal Surface
(FG-TPMS) annular plates is typically identified
as the IWP type, while the Gyroid type tends
to be associated with the smallest natural fre-
quency. Furthermore, the natural frequency de-
creases with decreasing radius-to-thickness ra-
tio. Figure 3 depicts the first six shape modes
of fully clamped FG-TPMS annular plates.

© 2023 Journal of Advanced Engineering and Computation (JAEC) 241



VOLUME: 7 | ISSUE: 4 | 2023 | December

Tab. 3: The first non-dimensional natural frequency ω̄ of FG-TPMS square plates.

a/h TPMS Method I1 I2 I3 II1 II2 II3
SSSS

Primitive HSDT [18] 3.4826 3.5452 3.7065 3.8517 4.1759 4.1928
Present 3.4883 3.5545 3.7230 3.8698 4.2177 4.2277

10 Gyroid HSDT [18] 3.4047 3.4726 3.6638 3.7183 4.0429 4.0891
Present 3.4120 3.4867 3.6876 3.7422 4.1036 4.1427

IWP HSDT [18] 3.5188 3.6009 3.7639 3.8131 4.1210 4.1490
Present 3.5279 3.6194 3.7937 3.8399 4.1880 4.2091

Primitive HSDT [18] 3.5274 3.5965 3.7735 3.9322 4.3050 4.3148
Present 3.5479 3.6166 3.7932 3.9485 4.3191 4.3290

200 Gyroid HSDT [18] 3.4553 3.5317 3.7455 3.8090 4.1968 4.2384
Present 3.4723 3.5491 3.7609 3.8234 4.2099 4.2509

IWP HSDT [18] 3.5811 3.6733 3.8603 3.9206 4.2951 4.3161
Present 3.5952 3.6884 3.8741 3.9319 4.3060 4.3272

CCCC
Primitive HSDT [18] 4.4454 4.5076 4.6924 4.9193 5.2988 5.3386

Present 4.4627 4.5375 4.7426 4.9740 5.4244 5.4412
10 Gyroid HSDT [18] 4.4413 4.5241 4.7343 4.7741 5.1064 5.1814

Present 4.4609 4.5699 4.8117 4.8459 5.2888 5.3415
IWP HSDT [18] 4.6490 4.7339 4.8999 4.9511 5.2322 5.2746

Present 4.6735 4.7946 4.9981 5.0343 5.4372 5.4570
Primitive HSDT [18] 4.5914 4.6724 4.9064 5.1894 5.7319 5.7507

Present 4.6798 4.7610 4.9913 5.2588 5.7924 5.8111
200 Gyroid HSDT [18] 4.6208 4.7332 5.0212 5.0902 5.6285 5.6928

Present 4.6887 4.8029 5.0843 5.1483 5.6820 5.7450
IWP HSDT [18] 4.8852 5.0055 5.2551 5.3478 5.8442 5.8634

Present 4.9409 5.0646 5.3104 5.3957 5.8909 5.9105

Tab. 4: The natural frequencies of the fully clamped FG-TPMS circular plates.

Rout/h TPMS I1 I2 I3
Ref [18] Present Ref [18] Present Ref [18] Present

Primitive 6.0679 6.0741 6.2887 6.2926 6.9333 6.9453
50 Gyroid 6.0993 6.1004 6.3954 6.3967 7.1948 7.1938

IWP 6.7852 6.7826 7.1244 7.1235 7.8522 7.8502
Primitive 5.7100 5.7175 5.8759 5.9168 6.3677 6.4652

5 Gyroid 5.6468 5.6707 5.8537 5.9468 6.4066 6.5935
IWP 6.1469 6.1904 6.3731 6.5171 6.8237 7.0830

4. Conclusions

This study analyzed the free vibration behavior
of FG-TPMS plates using the numerical model,
which seamlessly integrates first-order shear de-
formation theory and the moving Kriging mesh-
free method. The study was encompassed three
distinct TPMS structures (Primitive, Gyroid,
and IWP) and six volume distribution patterns

for each pattern. To accurately determine the
mechanical properties of FG-TPMS materials, a
fitting technique employing a two-phase piece-
wise function was employed. The obtained re-
sults from the present meshfree model were ex-
hibited remarkable agreement with the original
reference results obtained via isogeometric anal-
ysis. Key observations gleaned from numerical
examples are summarized by: i) The natural fre-
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Tab. 5: The first normalized natural frequency of the
fully clamped FG-TPMS annular plates with
different radius-to-thickness ratio.

Rout/h TPMS I1 I2 I3
Primitive 6.5759 6.8181 7.5190

50 Gyroid 6.4772 6.7796 7.6230
IWP 7.1388 7.4963 8.2652
Primitive 6.4359 6.6704 7.3403

10 Gyroid 6.3219 6.6153 7.4160
IWP 6.9418 7.2916 8.0144
Primitive 6.1662 6.3837 6.9719

5 Gyroid 6.0097 6.2873 6.9787
IWP 6.5243 6.8619 7.4706

Fig. 2: Node distributions of FG-TPMS annular and
circular plates.

Fig. 3: The first six shape modes of fully clamped FG-
TPMS annular plates (IWP, Rout/h =5).

quency exhibits a decreasing trend from lowest
to highest for Gyroid, Primitive, and IWP types

with the pattern I and from Gyroid, IWP, and
Primitive types with the pattern II; ii) The nat-
ural frequency yielded by the pattern I are lower
than those of the pattern II; iii) An increase
in the length-to-thickness ratio and a transition
from simply supported to fully clamped bound-
aries lead to an increase in both the natural fre-
quency.
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