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Abstract. In this study, we define the k-
Quasi Morgan-Voyce and k-Quasi Morgan-
Voyce-Lucas sequences, and some terms of
these sequences are given. We introduce the
closed-form formulas that give the terms of
these sequences. Also, we examine the char-
acteristic equation and properties of these se-
quences. Then, we find the relations between
the terms of the k-Quasi Morgan-Voyce and k-
Quasi Morgan-Voyce-Lucas sequences. Also, we
give these sequences generating functions, sum-
mation formulas, etc. We present special rela-
tions between the positive index term and the
negative index term of these sequences. In ad-
dition, we obtain the Binet formulas in two dif-
ferent ways. The first method is the classic one.
The second method is obtained with the help of
the generating functions of the sequences. More-
over, we calculate the special identities of these
sequences like Cassini and Catalan. Finally, we
examine the relations of the k-Quasi Morgan-
Voyce sequence with the Fibonacci, Bronze Fi-
bonacci, Pell, Balancing, Jacobsthal, Mersenne,
Oresme sequences and k-Quasi Morgan-Voyce-
Lucas sequence with the Lucas, Bronze Lucas,
Pell-Lucas, Balancing-Lucas, Jacobsthal-Lucas,
Mersenne-Lucas, Oresme-Lucas sequences, re-
spectively. In addition, for special k values,
these sequences are associated with the sequences
in OEIS.

Keywords: Binet Formula, Catalan Identitiy,
generating function, Quasi Morgan-Voyce se-
quence, Sequences.

1. Introduction

The Fibonacci and Lucas sequences are fa-
mous sequences of numbers. These sequences
have intrigued scientists for a long time. Fi-
bonacci sequences have been applied in vari-
ous fields such as Cryptology [1], Phylotaxis
[2], Biomathematics [3], Chemistry [4], En-
gineering [5], etc. Many generalizations of
the Fibonacci sequence have been given. The
known examples of such sequences are the k-
Fibonacci, Leonardo, Horadam, k-Pell, Gaus-
sian Fibonacci, k-Jacobsthal-Lucas, Narayana,
Perrin sequences, etc. (see for details in [6–11]
and [12–15]).

For n ≥ 0 , The Fibonacci numbers Fn,
Bronze Fibonacci BFn , Lucas numbers Ln, and
Bronze Lucas numbers BLn defined by the re-
currence relations, respectively,

Fn+2 = Fn+1 + Fn,

BFn+2 = 3BFn+1 +BFn,

Ln+2 = Ln+1 + Ln,

BLn+2 = 3BLn+1 +BLn

with the initial conditions F0 = 0, F1 =
1, BF0 = 0, BF1 = 1, L0 = 2, L1 = 1, and
BL0 = 2, BL0 = 3.

© 2024 Journal of Advanced Engineering and Computation (JAEC) 233



Volume: 8 | Issue: 4 | 2024 | December

For Fn, Ln, BFn and BLn the Binet formulas
are given by relations, respectively

Fn =
αn − βn

α− β
, Ln = αn + βn,

BFn =
λn − ψn

λ− ψ
, BLn = λn + ψn,

where α = 1+
√
5

2 , β = 1−
√
5

2 , λ = 3+
√
13

2 , and
ψ = 3+

√
13

2 are the roots of the characteristic
equation r2 − r − 1 = 0 and v2 − 3v − 1 = 0.
Here the number α and lambda are the known
golden ratio and Bronze ratio, respectively.

In addition, for n ≥ 0, the Pell numbers pn,
Pell-Lucas numbers qn, Balancing numbers Bn,
and Balancing-Lucas numbers Cn defined by the
recurrence relations, respectively,

pn+2 = 2pn+1 + pn, qn+2 = 2qn+1 + qn,

Bn+2 = 6Bn+1 +Bn, Cn+2 = 6Cn+1 + Cn,

with the initial conditions p0 = 0, p1 = 1, q0 =
2, q1 = 2, B0 = 0, B1 = 1 and C0 = 2, C1 = 6.

For pn, qn, Bn and Cn the Binet formulas are
given by relations, respectively,

pn =
φn − ωn

φ− ω
, qn = φn + ωn,

Bn =
γn − δn

γ − δ
and Cn = γn + δn

where φ = 1 +
√
2 , ω = 1 −

√
2, γ =

3 + 2
√
2, and δ = 3 + 2

√
2 are the roots of the

characteristic equation x2 − 2x − 1 = 0 and
y2 − 6y − 1 = 0, respectively. Here the num-
ber ϕ is the known silver ratio.

Moreover, for n ≥ 0, the Jacobsthal numbers
Jn, Jacobsthal-Lucas numbers jn , Mersenne
numbers Mn , Mersenne-Lucas numbers Nn ,
Oresme numbers On , and Oresme-Lucas num-
bers Hn defined by the recurrence relations, re-
spectively,

Jn+2 = Jn+1 + 2Jn, jn+2 = jn+1 + 2jn,

Mn+2 = 3Mn+1 − 2Mn,

Nn+2 = 3Nn+1 − 2Nn, On+2 = On+1 −
1

4
On,

Hn+2 = Hn+1 −
1

4
Hn,

with the initial conditions J0 = 0, J1 = 1, j0 =
2, j1 = 2,M0 = 0,M1 = 1, N0 = 2, N1 = 3, and
O0 = 0, O1 = 1/2, H0 = 2, H1 = 1.

For In, jn,Mn, Nn, On, and Hn given by rela-
tions, respectively,

Jn =
mn − pn

m− p
, jn = mn + pn,Mn =

rn − sn

r − s
,

Nn = rn + sn, On =
n

cn
, and Hn =

1

cn−1

where m = −2, p = 1, r = 2, s = 1, and
c1 = c2 = 1/2 are the roots of the character-
istic equation a2−a− 2 = 0, b2− 3b− 2 = 0 and
c2 − c− 1/4 = 0, respectively.

A. M. Morgan-Voyce introduced the Morgan-
Voyce sequences. In [16], Swany defined gener-
alized Morgan-Voyce polynomials {bn}n≥0 and
{Bn}n≥0 by the recurrence relations, respec-
tively,

bn+2 = xbn+1 + bn

Bn+2 = (x+ 1)Bn+1 +Bn

with the initial conditions b0 = 1, b1 = x+1 and
B0 = 1, B1 = x+ 2.

In [17], Özgül and Sahin studies were carried
out on the properties of the Morgan-Voyce poly-
nomials. In addition, Özel et al., worked on
Morgan-Voyce matrices [18].

With the help of the recurrence relation of
the Fibonacci sequence, k-sequences were intro-
duced, and these sequences have an important
place in number theory [19]. In [20], Falcon
and Plaza introduced the k-Fibonacci sequence
and obtained many properties related to this se-
quence. In addition, Falcon defined the k-Lucas
sequences [21]. Moreover, Falcon applied the
Hankel transform to the k-Fibonacci sequence
and obtained the terms of Fibonacci sequences
differently [22]. Furthermore, Shannon et al de-
fined the partial recurrence Fibonacci link and
found many of its properties [23].

As seen above, many generalizations of Fi-
bonacci and Lucas sequences have been given
so far. In this study, we give new gener-
alizations inspired by the -Fibonacci sequence
and Quasi Morgan-Voyce polynomials. We call
these sequences the -Quasi Morgan-Voyce and
-Quasi Morgan-Voyce-Lucas sequences and de-
note them as Mk,n , and Lk,n , respectively.
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We separate the article into 3 parts. In chap-
ter 2, we define the k-Quasi Morgan-Voyce and
k-Quasi Morgan-Voyce-Lucas sequences, then
give the characteristic equation, the Binet for-
mulas, and some properties for these sequences.
Then we examine the relationship between
k-Quasi Morgan-Voyce and k-Quasi Morgan-
Voyce-Lucas sequences. In addition, we are
shown the relationship of k-Quasi Morgan-Voyce
and k-Quasi Morgan-Voyce-Lucas sequences for
Catalan identity, Melham’s identity, Vajda’s
identity, etc.

In chapter 3, we examine the relations
of the k-Quasi Morgan-Voyce sequence with
the Fibonacci, Bronze Fibonacci, Pell, Bal-
ancing, Jacobsthal, Mersenne, Oresme se-
quences and k-Quasi Morgan-Voyce-Lucas se-
quence with the Lucas, Bronze Lucas Pell-Lucas,
Balancing-Lucas, Jacobsthal-Lucas, Mersenne-
Lucas, Oresme-Lucas sequences, respectively. In
addition, for special k values, these sequences
are associated with the sequences in OEIS.

2. k-Quasi Morgan-Voyce
and k-Quasi
Morgan-Voyce-Lucas
Sequences

In this section, we define Quasi Morgan-Voyce
sequence, which is a new generalization of Fi-
bonacci sequence inspired by Quasi and Morgan-
Voyce sequences. Also, Lucas generalization of
this sequence is defined by using the definition.
In addition, we obtain many properties of these
sequences.

For k ∈ R+, and n ∈ N, the k-Quasi Morgan-
Voyce Mk,n, and k-Quasi Morgan-Voyce-Lucas
Lk,n are defined by, respectively,

Mk,n+2 = (k + 2)Mk,n+1 −Mk,n,

with Mk,0 = 0 and Mk,1 = 1,

Lk,n+2 = (k + 2)Lk,n+1 − Lk,n,

with Lk,0 = 2 and Lk,1 = k+2. Then, let’s give
some information about the equations of these
sequences.

The characteristic equation of the -Quasi
Morgan-Voyce and -Quasi Morgan-Voyce-Lucas
sequences is

r2 − (k + 2)r + 1 = 0. (1)

The roots of the characteristic equation are as
follows:

r1 =
k + 2 +

√
k2 + 4k

2

r2 =
k + 2−

√
k2 + 4k

2
.

(2)

The relationship between these roots is given be-
low

r1 + r2 = k + 2, r1−2 =
√
k2 + 4k,

r21 + r22 = k2 + 4k + 2, r1r2 = 1.

The Mk,n and Lk,n values for the first four n
natural numbers are given in below:

Mk,0 = 0,Mk,1 = 1,Mk,2 = k + 2,

Mk,3 = k2 + 4k + 3,

Mk,4 = k3 + 6k2 + 10k + 4

and

Lk,0 = 2,Lk,1 = k + 2,Lk,2 = k2 + 4k + 2,

Lk,3 = k3 + 6k2 + 9k + 2,

Lk,4 = k4 + 8k3 + 20k2 + 16k + 2.

Also, the terms of the k-Quasi Morgan-Voyce
Mk,n , and k-Quasi Morgan-Voyce-Lucas Lk,n

sequences can be found with the help of the fol-
lowing relations. Let n ∈ N+

Mk,n =

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
(k + 2)n−1−2i(−1)i

(3)
and

Lk,n =

⌊n
2 ⌋∑

i=0

n

n− i

(
n− i

i

)
(k + 2)n−2i(−1)i. (4)

In the following theorem, the Binet formu-
las of the k-Quasi Morgan-Voyce Mk,n and k-
Quasi Morgan-Voyce-Lucas Lk,n sequences are
expressed.

Theorem 2.1. Let n ∈ N. We obtain
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i. Mk,n =
rn1 −rn2
r1−r2

,

ii. Lk,n = rn1 + rn2 .

Proof. The Binet form of a sequence is as fol-
lows

Mk,n = ar1
n + br2

n. (5)

The scalars a and b can be obtained by sub-
stituting the initial conditions. It is obtained
by solving the given system of equations. For
n = 0, Mk,0 = 0, and n = 1, Mk,1 = 1. Thus,
a = 1√

k2+4k
and b = −1√

k2+4k
are obtained. From

here
Mk,n =

rn1 − rn2
r1 − r2

. (6)

The proof of the other is shown similarly. Next,
we examine the relationships between the roots
of the characteristic equation of these sequences
and these sequences.

Theorem 2.2. We have

i. r2i1 =
Mk,2i

k+2 r1
√
k2 + 4k +

Lk,2i−1

k+2 ,

ii. r22i = −Mk,2i

k+2 r2
√
k2 + 4k +

Lk,2i−1

k+2 ,

iii. r12i+1 =
Mk,2i

k+2

√
k2 + 4k + r1

Lk,2i+1

k+2 ,

iv. r22i+1 = −Mk,2i

k+2

√
k2 + 4k + r2

Lk,2i+1

k+2 ,

v.
√
k2 + 4kMk,i + Lk,i = 2ri1,

vi.
√
k2 + 4kMk,i − Lk,i = −2ri2.

Proof. i. If the Binet formula is used, we obtain

Mk,zi

k + 2
r1
√
k2 + 4k +

ck,zi−1

k + 2

= r1
√
k2 + 4k

r1
2i − r2

2i

(r1 − r2)(k + 2)
+
r1

2i−1 + r2
2i−1

k + 2

=
r1

2i+1 − r1r2
2i + r1

2i−1 + r2
2i−1

k + 2

=
r1

2i
(
r1 +

1
r1

)
+ r2

2i
(
−r1 + 1

r2

)
k + 2

= r1
2i

The proofs of the others are shown similarly.

Theorem 2.3. Let x = r1 or x = r2. We obtain

i. xa = xMk,a −Mk,a−1,

ii. x2a = xaLk,a − 1,

iii. Mk,a(b−c) = xacMk,ab − xabMk,ac,

iv. xad =
xaMk,ad

Mk,a
− Mk,a(d−1)

Mk,a
,

v. xa = xbMk,a−b+1 − xb−1Mk,a−b,

vi. −1 + k + 2)x+x2(2
n+1+1)=x2(2

n+1)Lk,2n+1 .

Proof. i. For x = r1 , we have

xMk,a −Mk,a−1 = r1

(
ra1 − ra2
r1 − r2

)
−
(
ra−1
1 − ra−1

2

r1 − r2

)
=
ra−1
1

(
r21 − 1

)
− ra−1

2 (r1r2 − 1)

r1 − r2
= ra1

For x = r2, we have

xMk,a −Mk,a−1 = r2

(
ra1 − ra2
r1 − r2

)
−
(
ra−1
1 − ra−1

2

r1 − r2

)

=
ra1

(
r2 − 1

r1

)
− ra2(r2 − 1

r2
)

r1 − r2
= ra2

The proofs of the others are shown similarly.

In the following theorems, we find special
relations between the k-Quasi Morgan-Voyce
Mk,n and k-Quasi Morgan-Voyce-Lucas Lk,n

sequences.

Theorem 2.4. Let k ∈ R+,m, n ∈ Z+ and m >
n. The following equations are satisfied.

i. Lk,n = Mk,n+1 −Mk,n−1,

ii. L2
k,n − (k2 + 4k)M2

k,n = 4,

iii. 2Mk,m+n = Mk,mLk,n + Lk,mMk,n,

iv. Lk,mLk,n = Lk,m+n + Lk,m−n,

v.
√
k2 + 4kMk,n = Lk,n+1 + Lk,n−1,

vi. Mk,2n+2Lk,2n+1 = Mk,4n+3 + 1,

vii. Lk,−n = Lk,n,

viii. Mk,−n = −Mk,n.

Proof. i. If the Binet formula is used, we obtain

Mk,n+1 −Mk,n−1 =
rn+1
1 − rn+1

2

r1 − r2
− rn−1

1 − rn−1
2

r1 − r2

=
rn1

(
r1 − 1

r1

)
+ rn2

(
−r2 + 1

r2

)
r1 − r2

= rn1 + rn2 = Lk,n
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The proofs of the others are shown similarly.

Theorem 2.5. Let k ∈ R+,m, n ∈ Z+ and
m > n. We have

i. 2Lk,m−n= Lk,nLk,m−(k2+4k)Mk,nMk,m,

ii. 2Mk,m−n = Lk,nMk,m − Lk,mMk,n,

iii. Lk,nMk,m = Mk,m−n +Mk,m+n,

iv. Lk,m+n+1 = Lk,n+1Mk,m+1 − Lk,nMk,m,

v. Mk,m+n+1=Mk,m+1Mk,n+1-Mk,mMk,n,

vi. Mk,3n = (k2 + 4k)M3
k,n + 3Mk,n.

Proof. iv. If the Binet formula is used, we
obtain

Mk,m+1Mk,n+1 −Mk,mMk,n

=
rm+1
1 − rm+1

2

r1 − r2

rn+1
1 − rn+1

2

r1 − r2
− rm1 − rm2

r1 − r2

rn1 − rn2
r1 − r2

=
rm+n+1
1 (r1 − r2)− rm+n+1

2 (r1 − r2)

(r1 − r2)2
=

rm+n+1
1 − rm+n+1

2

r1 − r2
= Mk,m+n+1

The proofs of the others are shown similarly.

Theorem 2.6. Let k ∈ R+, and m,n ∈ Z+.
We obtain

i. Mk,m +Mk,m+4n = Mk,m+2nLk,2n,

ii. Mk,m+3n −Mk,m+n = Lk,m+2nMk,n,

iii. Mk,m+n +Mk,m+3n = Lk,nMk,m+2n,

iv. Lk,m+3n-Lk,m+n=(k2 + 4k)Mk,m+2nMk,n.

Proof. ii. If the Binet formula is used, we
get

Lk,nMk,m+2n = (rn1 + rn2 )
rm+2n
1 − rm+2n

2

r1 − r2

=
rm+3n
1 − rn1 r

m+2n
2 + rm+2n

1 rn2 − rm+3n
2

r1 − r2

=
rm+sn
1 − rm+sn

2 + rn1 r
n
2 (r

m+n
1 − rm+n

2 )

r1 − r2

=
rm+3n
1 − rm+3n

2

r1 − r2
+
rm+n
1 − rm+n

2

r1 − r2
= Mk,m+3n +Mk,m+n.

The proofs of the others are shown similarly.

Theorem 2.7. Let k ∈ R,m, n ∈ Z+,and n >
m. We have

i.
Mk,n+3M2

k,n −M3
k,n+1

=
1

k2 + 4k
(3Mk,n+1 − 2Mk,n+3 −Mk,n−3)

ii.
M2

k,n+mL2
k,n+m −M2

k,mL2
k,m

=
1

k2 + 4k
(Lk,4m+4n + 2Lk,2n+2m − Lk,4m + 4),

iii.
Mk,2m+1Mk,2n+1

=
1

k2 + 4k
(Lk,2m+2n+2 − Lk,2n−2m)

iv.
Mk,nLk,n+m −Mk,n+mMk,n−m

= Mk,2n+m −Mk,2n −Mk,2m −Mk,m

v.
Mk,nLk,n+m − Lk,nLk,n−m

= Mk,2n+m − Lk,2−m − Lk,m −Mk,m.

Theorem 2.8. Let k ∈ R and a, b, c ∈ Z+. The
following equations are satisfied.

i.
4Mk,a+b+c = Lk,aLk,bMk,c +Mk,aLk,bLk,c

+ Lk,aMk,bLk,c + (k2 + 4k)Mk,aMk,bMk,c,

ii.
4Lk,a+b+c = Lk,aLk,bLk,c + (k2 + 4k)

Lk,aMk,bMk,c +Mk,aLk,bLk,c +Mk,aMk,bLk,c.

The proofs of Theorem 2.7 and 2.8 are shown
using the Binet formulas.

Theorem 2.9. Let k ∈ R, a, b, c ∈ Z+ and c ̸=
a. We obtain

i.
L2
k,c−a = L2

k,a+b + (k2 + 4k)M2
k,c−a

Lk,a+bMk,b+c − (k2 + 4k)M2
k,b+c,

ii.
− (k2 + 4k)M2

k,c−a

= L2
k,a+b − Lk,c−aLk,a+bLk,b+c + L2

k,b+c,

iii.
M2

k,c−a = M2
k,a+b − Lk,a−cMk,a+bMk,b+c

+M2
k,b+c.
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Proof. iii. If the Binet formulas are used, we
have

M2
k,a+b − Lk,a−cMk,a+bMk,b+c +M2

k,b+c

= (
ra+b
1 − ra+b

2

r1 − r2
)2 − (ra−c

1 + ra−c
2 )(

ra+b
1 − ra+b

2

r1 − r2

)(
rb+c
1 − rb+c

2

r1 − r2

)
+ (

rb+c
1 − rb+c

2

r1 − r2
)2

= (
r1

c−a − r2
c−a

r1 − r2
)2 = M2

k,c−a

The proofs of the others are shown similarly.

In the following theorems, we calculate the
specific identities of the k-Quasi Morgan-Voyce
Mk,n and k-Quasi Morgan-Voyce-Lucas Lk,n se-
quences.

Theorem 2.10. (Cassini Identity) For n ∈ N,
we obtain

i. Mk,n+1Mk,n−1 −M2
k,n = −1,

ii. Lk,n+1Lk,n−1 − L2
k,n = k2 + 4k.

Proof. If the Binet formula is used, we get

i.

Mk,n+1Mk,n−1 −M2
k,n

=
r1

n+1 − r2
n+1

r1 − r2

r1
n−1 − r2

n−1

r1 − r2
− r1

n − r2
n

r1 − r2

r1
n − r2

n

r1 − r2

=
r1

2n − r1
n+1r2

n−1 − r2
n+1r1

n−1 + r2
2n

(r1 − r2)2

− r1
2n − 2r1

nr2
n + r2

2n

(r1 − r2)2
=

(r1r2)
n−r1

r2

(r1 − r2)2
+

(r1r2)
n−r2

(r1 − r2)2

+
2 · (r1r2)n

(r1 − r2)2
= −1.

ii.

Lk,n+1Lk,n−1 − L2
k,n

= (rn+1
1 + rn+1

2 )(rn−1
1 + rn−1

2 )

− (rn1 + rn2 )(r
n
1 + rn2 )

= r2n1 + rn+1
1 rn−1

2 + rn+1
2 rn−1

1 + r2n2

− r1
2n − 2r1

nr2
n − r2

2n = k2 + 4k

Theorem 2.11. (Catalan Identity) For n, r ∈
N, we have

i. Mk,n+rMk,n−r −M2
k,n = −M2

k,r,

ii. Lk,n+rLk,n−r − L2
k,n = (k2 + 4k)M2

k,r.

Theorem 2.12. (D’ocagne’s Identity) For n, r
natural numbers, and r ≤ n , we have

i. Mk,n+1Mk,r −Mk,nMk,r+1 = −Mk,n−r,

ii. Lk,n+1Lk,r − Lk,nLk,r+1 = (k2 +
4k)Mk,n−r.

Theorem 2.13. (Vajda’s Identity) For n, i, j ∈
N , we have

i. Mk,n+iMk,n+j-
Mk,nMk,n+i+j=Mk,iMk,j ,

ii.
Lk,n+iLk,n+j − Lk,nLk,n+i+j

= −(k2 + 4k)Mk,iMk,j .

Theorem 2.14. (Halton Identity) For n, i, j ∈
N, we have

i.
Mk,n+iMk,n−i −Mk,n+jMk,n−j

=
1

k2 + 4k
(Lk,2j − Lk,2i),

ii.
Lk,n+iLk,n−i − Lk,n+jLk,n−j

= 2Lk,2n + Lk,2i + Lk,2j .

Theorem 2.15. (Padilla Identity) For n ∈ N,
we have

i.

M3
k,n+2 +M3

k,n−1 − 3Mk,nMk,n+1Mk,n+2

=
1

k2 + 4k
(Mk,3n+6 − 3Mk,3n+3 +Mk,3n−3)

+ 3Mk,2n+3 − 3Mk,n+2 + 3Mk,n+1),

ii.

L3
k,n+2 + L3

k,n−1 − 3Lk,nLk,n+1Lk,n+2

= Lk,3n+6 + 3Lk,n+2 + Lk,3n−3 + 3Lk,n−1

+ (k2 + 4k)(−Mk,3n+3 − 3Mk,n−1

+ 3Mk,n+1 + 3Mk,2n+3).

Theorem 2.16. (Melham’s Identity) For n ∈
N, we have

i.

Mk,n+1Mk,n+2Mk,n+6 −M3
k,n

=
1

k2 + 4k
(Mk,3n+9 −Mk,3n + 3Mk,n −Mk,n−3

−Mk,n+5 −Mk,n+7),

ii.
Lk,n+1Lk,n+2Lk,n+6 − L3

k,n = Lk,3n+9

− 3Lk,n + Lk,n−3 + Lk,n+5 + Lk,n+7 − Lk,3n.
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Theorem 2.17. (Gelin-Cesaro’s Identity) For
n ∈ N, we have

i.

Mk,n+2Mk,n+1Mk,n−1Mk,n−2 −M4
k,n

=
1

(k2 + 4k)2
(−Lk,2n+4 − Lk,2n+2 + Lk,6

− Lk,2n−2 − Lk,2 − Lk,2n−4 + 4Lk,2n − 5),

ii.
Lk,n+2Lk,n+1Lk,n−1Lk,n−2 − L4

k,n

= Lk,2n+4 + Lk,2n+2 + Lk,6 + Lk,2n−2 + Lk,2

+ Lk,2n−4 − 4Lk,2n − 5.

The proofs of Theorem 2.11-2.17 are shown
similar way to Theorem 2.10.

In the following theorems, we obtain spe-
cial sum formulas of the k-Quasi Morgan-Voyce
Mk,n and k-Quasi Morgan-Voyce-Lucas Lk,n se-
quences.

Theorem 2.20. For n ∈ N, we have

i.
∑n

s=0 Mk,s =
(k+1)Mk,n−Mk,n−1+1

k ,

ii.
∑n

s=0 Lk,s =
(k+1)Lk,n−Lk,n−1+k

k .

Proof. i. From the definition of the k-Quasi
Morgan-Voyce sequence, the following equations
are written:

Mk,2 = (k + 2)Mk,1 −Mk,0,

Mk,3 = (k + 2)Mk,2 −Mk,1,

...

Mk,n = (k + 2)Mk,n−1 −Mk,n−2.

So, we have

−1 +

n∑
s=0

Mk,s = (k + 2)

n−1∑
s=1

Mk,s

−
n−2∑
s=0

Mk,s

1 +

n∑
s=0

Mk,s = (−Mk,n −Mk,0)(k + 2)

+ (k + 2)

n∑
s=0

Mk,s

− (−Mk,n −Mk,n−1 +

n∑
s=0

Mk,s)

Thus, we obtain

n∑
s=0

Mk,s =
(k + 1)Mk,n −Mk,n−1 + 1

k
.

The proofs of the others are shown similarly.

Theorem 2.21. We obtain

i.
∑n

s=0Mk,2s =
(k+2)Mk,2n+1−2Mk,2n−k−2

k2+4k ,

ii.

n∑
s=0

Mk,2s+1

=
(k2 + 4k + 2)Mk,2n+1 − (k + 2)Mk,2n − 2

k2 + 4k
,

iii.
∑n

s=0 Lk,2s =
(k+2)Lk,2n+1−2Lk,2n+k2+4k

k2+4k ,

iv.
∑n

s=0 Lk,2s+1=
(k2+4k+2)Lk,2n+1−(k+2)Lk,2n

k2+4k .

Proof. The proofs of the theorem are shown
similar to Theorem 2.20.

Theorem 2.22 For b, p, r, n ∈ N, and b > r, we
obtain

i.

(−1)nMk,bn+2n+r

=

n∑
j=0

(
n

j

)
(−1)j(k + 2)jMk,bn+r+j ,

ii.

(−1)nLk,bn+2n+r

=

n∑
j=0

(
n

j

)
(−1)j(k + 2)jLk,bn+r+j ,

iii.
∑n

j=0
Mk,bj+r

pj =
1

1−pCk,b+p2
1
pn (−pMk,bn+b+r + Mk,bn+r −

pn+1Mk,b−r + pn+2Mk,r),

iv.

n∑
j=0

Lk,bj+r

pj
=

1

1− pLk,b + p2
1

pn
(Lk,bn+r

+ pn+2Lk,r − pLk,bn+b+r − pn+1Lk,b−r).
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Proof. If Binet formulas, definitions, and geo-
metric series are used, we obtain

n∑
j=0

(
n

j

)
(−1)j(k + 2)jMk,bn+r+j

=

n∑
j=0

(
n

j

)
(−1)j(k + 2)j

rbn+r+j
1 − rbn+r+j

2

r1 − r2

=
1

r1 − r2
[rbn+r

1 (1− (k + 2)r1)
n

− rbn+r
2 (1− (k + 2)r2)

n]

=
(−1)n

r1 − r2
(rbn+2n+r

1 − rbn+2n+r
2 )

= (−1)nMk,bn+2n+r

The proofs of the others are shown similarly.

In the following theorems, we give special
generating functions of the k-Quasi Morgan-
Voyce Mk,n and k-Quasi Morgan-Voyce-Lucas
Lk,n sequences. In addition, we obtain Binet
formulas of Mk,n and Lk,n sequences with the
help of generating functions.

Theorem 2.23. The generating functions for
k-Quasi Morgan-Voyce and k-Quasi Morgan-
Voyce-Lucas sequences are given as follows, re-
spectively,

i. m(x) =
∑∞

n=0 Mk,nx
n = x

1−(k+2)x+x2 ,

ii. l(x) =
∑∞

n=2 Lk,nx
n = −xk−2x+2

1−(k+2)x+x2 .

Proof. i. The following equations are written
for the k-Quasi Morgan-Voyce sequence:

= x+ (k + 2)

∞∑
n=2

Mk,n−1x
n

m(x) =

∞∑
n=0

Mk,nx
n = x+

∞∑
n=2

Mk,nx
n

−
∞∑

n=2

Mk,n−2x
n

= x+ x(k + 2)

∞∑
n=1

Mk,nx
n

− x2
∞∑

n=0

Mk,nx
n

Thus, we have

m(x) =
x

1− (k + 2)x+ x2
.

The proofs of the others are shown similarly.

Theorem 2.24. For Mk,n and Lk,n sequences,
the Binet formulas can be obtained with the
help of the generating functions.

Proof. With the help of the roots of the char-
acteristic equation of these sequences, the roots
of the 1 − (k + 2)x + x2 = 0 equation become
1/r1 , and 1/r2. For Mk,n, we have

x

1− (k + 2)x+ x2

=
1

r1 − r2

1

1− r1x
− 1

r1 − r2

1

1− r2x

=
1

r1 − r2

∞∑
n=0

r1
nxn − 1

r1 − r2

∞∑
n=0

r2
nxn

=

∞∑
n=0

(
r2

n − r2
n

r1 − r2
)xn =

∞∑
n=0

Mk,nx
n.

Similarly, the Binet formula of the sequence
Lk,n is found.

Theorem 2.25. For a, b ∈ N, and b > a , we
obtain

i.
∑∞

i=0 Mk,bnx
n =

xMk,b

1−xLk,b+x2 ,

ii.
∑∞

i=0 Lk,bnx
n =

2−xLk,a

1−xLk,a+x2 ,

iii.
∑∞

i=0 Mk,an+bx
n =

Mk,b−xMk,b−a

1−xLk,a+x2 ,

iv.
∑∞

i=0 Lk,an+bx
n =

√
k2+4kMk,b−xMk,b−a

1−xLk,a+x2 ,

v.
∑∞

n=0
Mk,bn

n! xn = er
b
1x−er

b
2x

r1−r2
,

vi.
∑∞

n=0
Lk,bn

n! xn = er
b
1x + er

b
2x.

Proof. i. If the Binet formula is used, we get
∞∑
i=0

Mk,anx
n =

∞∑
n=0

r1
bn − r2

bn

r1 − r2
xn =

1

r1 − r2

∞∑
n=0

(rb1x)
n − 1

r1 − r2

∞∑
n=0

(rb2x)
n

=
1

r1 − r2

(
1

1− rb1x
− 1

1− rb2x

)
=

xMk,b

1− xCk,b + x2
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The proofs of the others are shown similarly.

3. Relations between
Special Sequences

In this chapter, we examine the relations of
the k-Quasi Morgan-Voyce sequence with the
Fibonacci, Bronze Fibonacci, Pell, Balancing,
Jacobsthal, Mersenne, Oresme sequences and
k-Quasi Morgan-Voyce-Lucas sequence with the
Lucas, Bronze Lucas, Pell-Lucas, Balancing-
Lucas, Jacobsthal-Lucas, Mersenne-Lucas,
Oresme-Lucas sequences, respectively. In
addition, for special k values, these sequences
are associated with the sequences in OEIS.

Theorem 3.1. For the k = 1, k = 5 values, the
following relations can be written between the
k-Quasi Morgan-Voyce sequence and Fibonacci
sequence Fn, k-Quasi Morgan-Voyce-Lucas se-
quence and Lucas sequence Ln, respectively;

i. M1,n = F2n and M5,n = F4n

3 ,

ii. L1,n = L2n and L5,n = L4n.

Proof. i. The Binet formula of the k-Quasi
Morgan-Voyce sequence is

Mk,n =
rn1 −rn2
r1−r2

=
(
k+2+

√
k2+4k

2 )n−(
k+2−

√
k2+4k

2 )n√
k2+4k

.

For k = 1 and k = 5, the following relations can
be written:

M1,n =
( 3+

√
5

2 )n−( 3−
√

5
2 )n√

5
=

( 1+
√

5
2 )2n−( 1−

√
5

2 )2n√
5

and

M5,n =
( 7+3

√
5

2 )n−( 7−3
√

5
2 )n

3
√
5

=
( 1+

√
5

2 )4n−( 1−
√

5
2 )4n

3
√
5

.

Thus, we obtain

M1,n = F2n and M5,n =
F4n

3
.

Proof. ii. The Binet formula of the k-Quasi
Morgan-Voyce-Lucas sequence is

Lk,n = rn1 + rn2

= (
k + 2 +

√
k2 + 4k

2
)n + (

k + 2−
√
k2 + 4k

2
)n

For k = 1 and k = 5, the following relations can
be written:

L1,n = (
3 +

√
5

2
)n + (

3−
√
5

2
)n

= (
1 +

√
5

2
)2n + (

1−
√
5

2
)2n

and

L5,n = (
7 + 3

√
5

2
)n + (

7− 3
√
5

2
)n

= (
1 +

√
5

2
)4n + (

1−
√
5

2
)4n

Thus, we obtain

L1,n = L2n and L5,n = L4n.

Theorem 3.2. For the k = 4 value, the follow-
ing relations can be written between the k-Quasi
Morgan-Voyce sequence and Bronze Fibonacci
sequence pn, k-Quasi Morgan-Voyce-Lucas se-
quence and Bronze Lucas sequence qn, respec-
tively;

i. M4,n = p2n

2 ,

ii. L4,n = q2n.

Proof. The proofs are shown in a similar to
Theorem 3.1.

Theorem 3.4. For the k = 9/4 value, the
following relations can be written between the
k-Quasi Morgan-Voyce sequence and Jacobsthal
sequence Jn , k-Quasi Morgan-Voyce-Lucas se-
quence and Jacobsthal-Lucas sequence jn, re-
spectively;

i. M 9
4 ,n

= 1
5

1
4n−1 J4n,

ii. L 9
4 ,n

= 1
4n j4n.

Proof. The proofs are shown in a similar to
Theorem 3.1.

Theorem 3.5. For the k = 49/8 value, the
following relations can be written between the
k-Quasi Morgan-Voyce sequence and Mersenne
sequence Mn, k-Quasi Morgan-Voyce-Lucas se-
quence and Mersenne-Lucas sequence Nn, re-
spectively;
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i. M 49
8 ,n = 1

8n−1
1
63M6n,

ii. L 49
8 ,n = 1

8nN6n.

Proof. The proofs are shown in a similar to
Theorem 3.1.

Theorem 3.6. For the k = 4 value, the follow-
ing relations can be written between the k-Quasi
Morgan-Voyce sequence and Balancing sequence
Bn , k-Quasi Morgan-Voyce-Lucas sequence and
Balancing-Lucas sequence Cn, respectively;

i. M4,n = Bn,

ii. L4,n = Cn.

Proof. The proofs are shown in a similar to
Theorem 3.1.

Theorem 3.7. For the k = 2 value, the follow-
ing relations can be written between the k-Quasi
Morgan-Voyce sequence and Oresme sequence
On , k-Quasi Morgan-Voyce-Lucas sequence and
Oresme-Lucas sequence Hn, respectively;

i. M2,n = 2
3n (4

n − 1)On,

ii. L2,n = 1
2 (4

n + 1)Hn.

Proof. The proofs are shown in a similar to
Theorem 3.1.

Theorem 3.8. The following relations are pro-
vided for some k values.

i. For k = 3,M3,n = Cn and L3,n = Dn,

ii. For k = 6,M6,n = En and L6,n = Fn,

iii. For k = 6,M7,n = Gn and L7,n = Hn,

Here the Cn, Dn, En, Fn, Gn and Hn sequences
are the A004254, A003501, A001090, A086903,
A143325, and A056918 sequences in OEIS,
respectively.

Proof. The proofs are shown in a similar to
Theorem 3.1.

4. Conclusions

In this paper, we defined the k-Quasi Morgan-
Voyce and k-Quasi Morgan-Voyce-Lucas se-
quences. Then, we found the main features of
these sequences. Also, we examined the rela-
tionships between the terms of these sequences.
We again associated the sum of squares of con-
secutive terms of these series with the sequences.
In addition, unlike the known, we obtained Bi-
net formulas with the help of the generating
functions. We did exercises on the binomial
sum formulas of these sequences. Moreover, we
associated k-Quasi Morgan-Voyce and k-Quasi
Morgan-Voyce-Lucas sequences with Fibonacci,
Bronze Fibonacci, Pell, Balancing, Jacobsthal,
Mersenne, Oresme and Lucas, Bronze Lucas,
Pell-Lucas, Balancing-Lucas, Jacobsthal-Lucas,
Mersenne-Lucas, Oresme-Lucas numbers, re-
spectively. Furthermore, for special values, we
associated these sequences with the sequence of
the OEİS. If this study is examined, such fea-
tures can be found in other sequences such as
Horadam, and Mersenne sequences. Addition-
ally, studies can be done on special transfor-
mations of these sequences such as the Cata-
lan transform of the k-Quasi Morgan-Voyce
and k-Quasi Morgan-Voyce-Lucas sequences and
k-Quasi Morgan-Voyce and k-Quasi Morgan-
Voyce-Lucas quaternions.
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