Journal of Advanced Engineering and Computation

Issued quarterly (4 issues per year)

JAEC Annual Best Cited Paper Award


Announcement: 2019 JAEC Best Cited Paper Award

Journal of Advanced Engineering and Computation (JAEC) has announced JAEC Annual Best Cited Paper Award for research and review articles of the JAEC. The purpose of this award is to recognize the best-cited paper published in the past three (03) years that attracts the most citations. The quantity and quality of citations of papers are based on data from ISI and/or Scopus and/or Google Scholar that tracks the paper since its first publication.

From 2017 to 2019, JAEC has published 64 research/review papers in 3 volumes and 10 issues. Top five papers with high quantity and quality of citations have been evaluated by the Award Selection Committee.

Now, it is our pleasure to announce that Winner of 2019 Best Cited Paper Award is the paper entitled "Computational cardiovascular flow analysis with the variational multiscale methods" which is published in Volume 3, issue 2, pp. 366-405, 2019 by the authors K Takizawa*, Y Bazilevs, TE Tezduyar, MC Hsu.

Congratulation on the 2019 Award Winner.

The 2020 Award will be announced in early April 2021

Award Certificate

Click here to download JAEC flyer and share to friends More...

AIMS & SCOPE
Journal of Advanced Engineering and Computation (JAEC) is a forum for the presentation of innovative ideas, approaches, developments, and research projects in the area of advanced engineering and computation. It serves to facilitate the exchange of information between researchers and industry professionals. Multi-disciplinary topics that connect the core areas of advanced engineering and computation and its applications are also covered in this journal.

It also aims to promote and coordinate developments in the field of advanced engineering and computation. The international dimension is emphasized in order to foster international collaboration in advanced engineering and computation to meet the needs of broadening the applicability and scope of the current body of knowledge.

READERSHIP
The journal provides a vehicle to help professionals, academics, researchers and policy makers working in fields relevant to advanced engineering and computation to disseminate information and to learn from each other's work.

CONTENTS
JAEC publishes original research papers, review papers, case reports, technical notes and short communications. 

OPEN ACCESS
JAEC is a fully open access, single-blind peer reviewed, electronic and print, and a quarter-annual publication. Currently, Ton Duc Thang University is pleased to cover all publishing fees for the journal; as a result, authors do not have to pay any fees although their published papers are open to the reader.

TERM AND CONDITIONS 
JAEC publishes Open Access articles under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium provided the original work is properly cited.

Call for Papers
Issue September - 2021 (Jun 16, 2021) More...
Research Open Access
Anh-Tuan Tran , Phong Thanh Tran , Van Van Huynh
Page(s): 1-18 in Vol 5, Iss 1 (2021)
Time cited: 0

This study investigates load frequency control based generalized extended state observer (GESO) for interconnected power systems subject to multi-kind of the power plant. First, the mathematical model of the interconnected power system is proposed based on the dynamic model of thermal power plant with reheat turbine and hydropower plant. Second, the GESO is designed to estimate the system states and disturbances. In addition, the problem of unmeasurable system states in the interconnected power network due to lack of sensor has been solved by using the proposed load frequency control based GESO. The numerical experiments are carried out by using MATLAB/ SIMULINK simulation. The simulation results point out that the proposed control approach has the capacity to handle the uncertainties and disturbances in the interconnected power system with better transient performances in comparison with the existing control approach. The relevant dynamic models have already been used for the simulation of the physical constraints of the governor dead band (GDB) and generation rate constraint (GRC) effect in the power plants. It is evident that the robustness of the suggested controller in terms of stability and effectiveness of the system.

 

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access
Imtiaz Akber Chowdhury
Page(s): 19-26 in Vol 5, Iss 1 (2021)
Time cited: 0

In the recent era, unmanned aerial vehicle (UAV) plays an important role in numerous application fields related to the wireless communication system. Due to its precise control, efficient deployment, and affordable cost, UAV-assisted communication attracts significant attention to all the sectors including the defense sector, agriculture sector, and security purpose, and so on. Though UAVassisted relaying has enormous advantages but there are potential challenges while UAV deploys as a relay. For example, deploying UAV in the wireless communication field, its battery life is the main concern due to its limited battery size and storage capacity. To get significant benefits from UAV while deployed in the cooperative communication network, the battery status of the UAV is an unavoidable issue. To minimize the aforementioned problem, energy harvesting (EH) techniques can be an efficient solution. The UAV can harvest energy from the transmitted power by the source and with the help of this harvested energy UAV can retransmit the signal to the destination. However, there are several parameters that also significantly influence the UAV-based cooperative system performance such as UAV’s position, time allocation factor and power allocation factor, and UAV’s height. Considering the importance of the aforementioned parameters, in this paper, we have considered simultaneous wireless information and power transfer (SWIPT) enabled UAV-assisted relaying network and evaluate the system outage performance with different parameters aspects. We have provided some insight about the parameters such as the UAV’s position, the power allocation factor and the time allocation factor and the UAV’s height by providing simulation results such as the outage probability versus transmit power in the different urban scenario, the outage probability versus time allocation factor and power allocation factor and the outage probability versus UAV’s height. These simulation results clearly show the significance of the abovementioned parameters in wireless-powered UAVassisted cooperative communication.

 

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access
Tan Thang Nguyen , Manh Tuan Bui , Thanh-Phong Dao
Page(s): 27-34 in Vol 5, Iss 1 (2021)
Time cited: 0

Textile-and-garment industry is one of the largest economic sectors in Vietnam, with 4000 enterprises and a turnover of 20 billion USD/year. Therefore, designing and manufacturing are essential tasks for roll fabric cutting machines to serve the textile and garment industry. First of all, theoretical calculations are formulated for an automatic roll cutting machine. Then, simulations are conducted by a combination of MITcalc and Catia software. A prototype of a fabric cutting machine is manufactured and experiments are implemented. The experimental results show that the machine stably works and overcomes the disadvantages of the popular cutting machines with the core-free roll on the market. The results also found that the size tolerance is achieved about ± 0.5 mm, and this ensures good working quality. The designed machine has a significant contribution to the textile and garment area in decreasing the cost of the cutting process.

 

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access
Duy Suu Nguyen , Viet Dan Nguyen , Duc Thanh Tran , Michael Joseph Dempsey
Page(s): 35-49 in Vol 5, Iss 1 (2021)
Time cited: 0

The paper examines the impact of capital structure in the context of foreign ownership on firm performance on non-financial companies in Vietnam between 2008 and 2018. The study employs Pooled OLS, Fixed effect, random effect, and Generalized Least Square to analyze the data. The study finds a non-linear relationship of foreign ownership and firm performance, so that the relationship, which is at first a positive one, becomes negative beyond a certain level of foreign ownership (30-45% ownership depending on the measure of performance). This insight is then combined with a generally inverse relationship between capital structure and performance. Besides, we find that the firm’s size (SIZE) has a positive influence on profitability and financial leverage, while both financial leverage (LEV) and the number of listed years of company (AGE) impact negatively on firm performance. Furthermore, growth of sales (GROWTH) has a positive effect on the debt ratio, and growth rate (GDP) has a negative effect on financial leverage.

 

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access
Mahdi Shariati , Danial Jahed Armaghani , Manoj Khandelwal , Jian Zhou , Majid Khorami
Page(s): 50-74 in Vol 5, Iss 1 (2021)
Time cited: 2

Compressive Strength (CS) is an important mechanical feature of concrete taken as an essential factor in construction. The current study has investigated the effect of fly ash and silica fume replacement content on the strength of concrete through Artificial Neural Networks (ANNs) and Extreme Learning Machine (ELM). In this study, different ratios of fly ash with (out) extra quantity of silica fume have been tested. Water cement (w/c) ratio varies during the test. Eight input parameters including Total Cementitious Material (TCM), Silica Fume (SF) replacement ratio, coarse aggregate (ca), fly ash (FA) replacement ratio, Sewage Sludge Ash (SSA) as a combination of cement and fine aggregate replacement, water-cement ratio, High Ratio Water Reducing Agent (HRWRA) and Age of Samples (AS) and one output parameter as the CS of concrete have been investigated through ANN and ELM. Up to now, numerous experimental studies have been used to analyze the compressive strength of concrete while retrofitted with fly ash or silica fume, however, the novelty of this study is in its use of AI models (ELM, ANN). The models have been developed and their outcomes were compared through six statistical indicators (MAE, RMSE, RRMSE, WI, RMAE and R2). Subsequently, both methods were shown as reliable tools for assessing the influence of cementitious material on compressive strength of concrete, however, ANN remarkably was better than ELM. As a result, FA showed less contribution to the strength of concrete at short times, but much at later ages. As a result, the enhanced influence of low amount of SF on CS was not significant. Adding fly ash has reduced the compressive strength in short term, but increased the compressive strength in long term. Adding silica fume raises the strength in short term, but decreases the strength in long term.

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access (1597 views since : Sep 30, 2019)
Du Dinh-Cong , Linh Vo-Van , Dung Nguyen-Quoc , Trung Nguyen-Thoi
Page(s): 452-463 in Vol 3, Iss 3 (2019)
Time cited: 4

Modal kinetic energy (MKE) feature has been mostly employed for optimal sensor layout strategies; nevertheless, little attention is paid to use the feature to the field of structural damage detection. The article presents the extensive applicability of MKE change ratio (MKECR), a good damage sensitive parameter, to damage localization and quantification of laminated composite beams. The formulation of the parameter is based on the closed-form of element MKE sensitivity. The performance of the offered damage detection method is numerically verified by a clamped-clamped composite beam and a two-span continuous composite beam with different hypothetical damage scenarios. The influence of incomplete mode shapes, various noise levels as well as damage magnitudes on damage prediction results are also investigated. The obtained results from these numerical examples indicate that the offered method reliably localize the actually damaged elements and approximately estimate their severities, even under incomplete measurements at a high noise level.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

 

Research Open Access (1525 views since : Nov 30, 2017)
Thao Nguyen-Trang , Long Vu-Hoang , Trieu Nguyen-Thi , Ha Che-Ngoc
Page(s): 123-133 in Vol 1, Iss 2 (2017)
Time cited: 0

Tax consulting service is one of various professional consulting services and is interested to study by many researchers. Nevertheless, this issue has not been interested to research in Vietnam. This paper performs confirmatory factors analysis (CFA) and structural equation modeling (SEM) to identify the factors influencing the intentions of using tax consulting services of firms in Ho Chi Minh city, Vietnam. Specifically, this paper finds that the intentions depend on the “attitude toward the behavior” and “replacement”. In addition, through Chi-square test, it can be proven that the intentions also depend on type of firms and whether they have ever used tax consulting service or not. Based on the obtained results, the discussion and recommendation are also proposed.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (1406 views since : Jun 8, 2017)
Jaroslav Pokorny
Page(s): 04-17 in Vol 1, Iss 1 (2017)
Time cited: 3

Comparing graph databases with traditional,e.g., relational databases, some important database features are often missing there. Particularly, a graph database schema including integrity constraints is mostly not explicitly defined, also a conceptual modelling is not used. It is hard to check a consistency of the graph database, because almost no integrity constraints are defined or only their very simple representatives can be specified. In the paper, we discuss these issues and present current possibilities and challenges in graph database modelling. We focus also on integrity constraints modelling and propose functional dependencies between entity types, which reminds modelling functional dependencies known from relational databases. We show a number of examples of often cited GDBMSs and their approach to database schemas and ICs specification. Also a conceptual level of a graph database design is considered. We propose a sufficient conceptual model based on a binary variant of the ER model and show its relationship to a graph database model, i.e. a mapping conceptual schemas to database schemas. An alternative based on the conceptual functions called attributes is presented.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (1346 views since : Dec 31, 2019)
Ravi Teja Velpula , Barsha Jain , Ha Quoc Thang Bui , Hieu Pham Trung Nguyen
Page(s): 551-588 in Vol 3, Iss 4 (2019)
Time cited: 4

III-nitride nanowire-based light-emitting diodes (LEDs) have been intensively studied as promising candidates for future lighting technologies. Compared to conventional GaN-based planar LEDs, III-nitride nanowire LEDs exhibit numerous advantages including greatly reduced dislocation densities, polarization fields, and quantum-conned Stark effect due to the effective lateral stress relaxation, promising high-efficiency full-color LEDs. Beside these advantages, however, several issues have been identified as the limiting factors for further enhancing the nanowire LED quantum efficiency and light output power. Some of the most probable causes have been identified as due to the lack of carrier confinement in the active region, non-uniform carrier distribution, electron overflow, and the nonradiative recombination along the nanowire lateral surfaces. Moreover, the presence of large surface states and defects contribute significantly to the carrier loss in nanowire LEDs. Consequently, reported nanowire LEDs show relatively low output power. Recently, III-nitride core-shell nanowire LED structures have been reported as the most efficient nanowire white LEDs with a record-high output power which is more than 500 times stronger than that of nanowire white LEDs without using core-shell structure. In this context, we will review the current status, challenges, and approaches for the high-performance IIInitride nanowire LEDs. More specifically, we will describe the current methods for the fabrication of nanowire structures including top-down and bottom-up approaches, followed by characteristics of III-nitride nanowire LEDs. We will then discuss the carrier dynamics and loss mechanism in nanowire LEDs. The typical designs for the enhanced performance of III-nitride nanowire LEDs will be presented next. The color-tunable nanowire LEDs with emission wavelengths in the visible spectrum and phosphor-free nanowire white LEDs will be finally discussed.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access (1256 views since : Dec 31, 2019)
Faiza Zaamoune , Tidjani Menacer , René Lozi , Guanrong Chen
Page(s): 511-522 in Vol 3, Iss 4 (2019)
Time cited: 1

In this paper, hidden bifurcation routes to multiscroll chaotic attractors generated by saturated function series are explored. The method to nd such hidden bifurcation routes (HBR) depending upon two parameters is similar to the method introduced by Menacer, et al. (2016) for Chua multiscroll attractors. These HBR are characterized by the maximal range extension (MARE) of their attractors and coding the appearance order of the scrolls under the control of the two parameters. Moreover, these HDR have interesting symmetries with respect to the two parameters. The novelty that this article introduces, is firstly the paradigm of MARE and the formula giving their approximate value depending upon parameters p and q, which is linked to the size of the scrolls; secondly the coding of the HBR which is dened for the first time including the basic cell; and thirdly unearthing the symmetries of these routes, allowing to obtain their coding without any numerical computation.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Open Access (1247 views since : Nov 30, 2017)
Thi Phuong Thao Nguyen , Doan Quoc Anh Nguyen , Miroslav Voznak , Van Tho Le
Page(s): 87-94 in Vol 1, Iss 2 (2017)
Time cited: 3

Enhancement of the color uniformity, the lumen output of the multi-chip white LED lamps (MCW-LEDs) at high color correlated temperature is a big challenge for researchers. However, an innovative LED lamp designed with a phosphor compounding, which combines (La,Ce,Tb) PO4:Ce:Tb (LaTb) green phosphor with YAG: CE yellow phosphor, is proposed as an optimal solution to this requirement. Index, using LaTb green phosphor into MCWLEDs could bring a superior optical performance for MCW-LEDs. It is found that the lumen output of this new MCW-LED at a high color temperature of 8500 K significantly improves up to 1600 lm compared to MCW-LEDs without LaTb phosphor. The simulation results demonstrated that the CCT deviation sharply decreases from 9000 to 1000 at the LaTb concentration range from 0 to 1.8 %, while the Color Rendering Index ability (CRI) and the Color Quality Scale (CQS) slightly decrease. To obtain the highest lumen output and the best color uniformity, the particle size range within 6 - 8 µm should be suggested.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.