Journal of Advanced Engineering and Computation

Issued quarterly (4 issues per year)

JAEC Annual Best Cited Paper Award


Announcement: 2019 JAEC Best Cited Paper Award

Journal of Advanced Engineering and Computation (JAEC) has announced JAEC Annual Best Cited Paper Award for research and review articles of the JAEC. The purpose of this award is to recognize the best-cited paper published in the past three (03) years that attracts the most citations. The quantity and quality of citations of papers are based on data from ISI and/or Scopus and/or Google Scholar that tracks the paper since its first publication.

From 2017 to 2019, JAEC has published 64 research/review papers in 3 volumes and 10 issues. Top five papers with high quantity and quality of citations have been evaluated by the Award Selection Committee.

Now, it is our pleasure to announce that Winner of 2019 Best Cited Paper Award is the paper entitled "Computational cardiovascular flow analysis with the variational multiscale methods" which is published in Volume 3, issue 2, pp. 366-405, 2019 by the authors K Takizawa*, Y Bazilevs, TE Tezduyar, MC Hsu.

Congratulation on the 2019 Award Winner.

The 2020 Award will be announced in early April 2021

Award Certificate

Click here to download JAEC flyer and share to friends More...

AIMS & SCOPE
Journal of Advanced Engineering and Computation (JAEC) is a forum for the presentation of innovative ideas, approaches, developments, and research projects in the area of advanced engineering and computation. It serves to facilitate the exchange of information between researchers and industry professionals. Multi-disciplinary topics that connect the core areas of advanced engineering and computation and its applications are also covered in this journal.

It also aims to promote and coordinate developments in the field of advanced engineering and computation. The international dimension is emphasized in order to foster international collaboration in advanced engineering and computation to meet the needs of broadening the applicability and scope of the current body of knowledge.

READERSHIP
The journal provides a vehicle to help professionals, academics, researchers and policy makers working in fields relevant to advanced engineering and computation to disseminate information and to learn from each other's work.

CONTENTS
JAEC publishes original research papers, review papers, case reports, technical notes and short communications. 

OPEN ACCESS
JAEC is a fully open access, single-blind peer reviewed, electronic and print, and a quarter-annual publication. Currently, Ton Duc Thang University is pleased to cover all publishing fees for the journal; as a result, authors do not have to pay any fees although their published papers are open to the reader.

TERM AND CONDITIONS 
JAEC publishes Open Access articles under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium provided the original work is properly cited.

Call for Papers
Issue December - 2021 (Oct 11, 2021) More...
Research Article Open Access
Hari Mohan Srivastava
Page(s): 135-166 in Vol 5, Iss 3 (2021)
Time cited: 5

This survey-cum-expository review article is motivated essentially by the widespread usages of the operators of fractional calculus (that is, fractional-order integrals and fractional-order derivatives) in the modeling and analysis of a remarkably large variety of applied scientific and real-world problems in mathematical, physical, biological, engineering and statistical sciences, and in other scientific disciplines. Here, in this article, we present a brief introductory overview of the theory and applications of the fractional-calculus operators which are based upon the general Fox-Wright function and its such specialized forms as (for example) the widely- and extensively investigated and potentially useful Mittag-Leffter type functions.


Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.



Research Article Open Access
Nguyen Hai Son Dang , Doan Minh Thong Nguyen , Thi Phuong Loan Nguyen , Doan Quoc Anh Nguyen , Hsiao-Yi Lee
Page(s): 167-176 in Vol 5, Iss 3 (2021)
Time cited: 0

One of the most important factors used to evaluate lighting performances of
WLEDs is the angular color uniformity (ACU). The triple-layer remote phosphor structure is considered as a proposed mechanism for elevating the ACU of a WLED. The analysis on the triple-layer structure's efficiency is specifically demonstrated in this article. Additionally, there are detailed comparisons between the triple-layer (TL) and the dual-layer (DL) geometries to reinforce the idea of using TL packaging for WLED optical enhancements. The WLEDs with average correlated color temperatures (ACCTs) of 6600 K and 7700 K are utilized for experiments. According to the outcomes, the attained color rendering index from DL design is higher than the one from TL package. However, the TL shows better color quality scale (CQS) than the DL, regardless of ACCTs. Besides, not only does the TL yield better CQS but also heighten the lumen efficiency. On top of that, the ACU of TL WLED model is much higher than that of the DL as a result of deviated correlated color temperature reduction at all ACCTs. This result is more obvious at the high ACCT of 7700 K, in other words, the ACU of a high-ACCT WLED shows more visible enhancement with TL structure. From these results, the triple-layer remote phosphor structure stands out as the promising advancement in the production of high-quality WLEDs.


Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Article Open Access
Anh-Minh Duc Tran , Huu Hoa Tran , Viet Hung Tran
Page(s): 177-188 in Vol 5, Iss 3 (2021)
Time cited: 0

The regular increase in COVID-19 cases and deaths has resulted in a worldwide lockdown, quarantine and some restrictions. Due to the lack of a COVID-19 vaccine, it is critical for developing and least developed countries like Vietnam to investigate the efficacy of non-pharmaceutical treatments like social distance or national lockdown in preventing COVID-19 transmission. To address this need, the goal of this study was to develop a clear and reliable model for assessing the impact of social distancing on the spread of coronavirus in Vietnam. For the case study, the Logistic Growth Curve (LGC) model, also known as the Sigmoid model, was chosen to fit COVID-19 infection data from January 23, 2020 to April 30, 2020 in Vietnam. To determine the optimal set of LGC model parameters, we used the gradient descent technique. We were pleasantly surprised to discover that the LGC model accurately predicted COVID-19 community transmission cases over this time period, with very high correlation coefficient value r = 0.993. The results of this study imply that using social distancing technique to flatten the curve of coronavirus disease infections will help minimize the surge in active COVID-19 cases and the spread of COVID-19 infections.

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

 

Research Article Open Access
Dung Quang Nguyen , Quang Thanh Nguyen , Trung Van Nguyen , Tai Huu Le , Hau Huu Vo , Pavel Brandstetter
Page(s): 189-201 in Vol 5, Iss 3 (2021)
Time cited: 0

The paper deals with the utilization of Kalman filter and fuzzy logic control in induction motor drive with direct torque control (DTC). In order to lower ripple of stator current vector in DTC drive, pulse width modulation technique with high switching frequency is applied. However, the performance of the DTC also depends on the accuracy of both stator resistance and stator current vector. In the paper, the stator resistance and stator current components are assumed to be distorted by Gaussian noises. In order to reduce the effect of noises especially at low speed and very low speed regions, a simple Kalman filter is applied for filtering current components, and fuzzy logic theory is used to increase the flexibility of proportional-integral (PI) compensator in the speed controller of the drive structure. Simulations are implemented in conditions of high-level noises of stator current and stator resistance, and a wide range of load torque. An ITAE-based criterion is utilized to evaluate the performance of drive structures. Results confirmed the expected dynamic properties of the proposed drive structure.

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


Research Article Open Access
Pankti Shah , Yesha Patel , Arpan Desai , Jayshri Kulkarni , Trushit Upadhyaya , Merih Palandoken
Page(s): 202-213 in Vol 5, Iss 3 (2021)
Time cited: 0

A transparent dual octagonal split ring-shaped resonator connected by a horizontal strip is proposed for tri-band applications. Stub-loaded microstrip line fed structural design of radiator consists of two slotted octagonal-shaped rings connected via a strip on the top with the partial ground at the back. The low profile (40×25 mm2) radiator achieves impedance bandwidth of (46.08%) 1.62-2.59,(7.78%) 3.95-4.27, and (12.60%) 5.13-5.82, respectively. A bi-directional (dipole shaped) radiation pattern with maximum gain and minimum efficiency of 2.5 dBi and 52%, respectively is achieved. Transparency above 80%, low profile structure, and tri-band operation make the antenna a good contender for WLAN and Sub-6 GHz 5G applications. Good correlation is observed for the modeled and experimental parameters.

 

Creative Commons License

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Article Open Access (1627 views since : Sep 30, 2019)
Du Dinh-Cong , Linh Vo-Van , Dung Nguyen-Quoc , Trung Nguyen-Thoi
Page(s): 452-463 in Vol 3, Iss 3 (2019)
Time cited: 8

Modal kinetic energy (MKE) feature has been mostly employed for optimal sensor layout strategies; nevertheless, little attention is paid to use the feature to the field of structural damage detection. The article presents the extensive applicability of MKE change ratio (MKECR), a good damage sensitive parameter, to damage localization and quantification of laminated composite beams. The formulation of the parameter is based on the closed-form of element MKE sensitivity. The performance of the offered damage detection method is numerically verified by a clamped-clamped composite beam and a two-span continuous composite beam with different hypothetical damage scenarios. The influence of incomplete mode shapes, various noise levels as well as damage magnitudes on damage prediction results are also investigated. The obtained results from these numerical examples indicate that the offered method reliably localize the actually damaged elements and approximately estimate their severities, even under incomplete measurements at a high noise level.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

 

Research Article Open Access (1553 views since : Nov 30, 2017)
Thao Nguyen-Trang , Long Vu-Hoang , Trieu Nguyen-Thi , Ha Che-Ngoc
Page(s): 123-133 in Vol 1, Iss 2 (2017)
Time cited: 0

Tax consulting service is one of various professional consulting services and is interested to study by many researchers. Nevertheless, this issue has not been interested to research in Vietnam. This paper performs confirmatory factors analysis (CFA) and structural equation modeling (SEM) to identify the factors influencing the intentions of using tax consulting services of firms in Ho Chi Minh city, Vietnam. Specifically, this paper finds that the intentions depend on the “attitude toward the behavior” and “replacement”. In addition, through Chi-square test, it can be proven that the intentions also depend on type of firms and whether they have ever used tax consulting service or not. Based on the obtained results, the discussion and recommendation are also proposed.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Article Open Access (1433 views since : Jun 8, 2017)
Jaroslav Pokorny
Page(s): 04-17 in Vol 1, Iss 1 (2017)
Time cited: 5

Comparing graph databases with traditional,e.g., relational databases, some important database features are often missing there. Particularly, a graph database schema including integrity constraints is mostly not explicitly defined, also a conceptual modelling is not used. It is hard to check a consistency of the graph database, because almost no integrity constraints are defined or only their very simple representatives can be specified. In the paper, we discuss these issues and present current possibilities and challenges in graph database modelling. We focus also on integrity constraints modelling and propose functional dependencies between entity types, which reminds modelling functional dependencies known from relational databases. We show a number of examples of often cited GDBMSs and their approach to database schemas and ICs specification. Also a conceptual level of a graph database design is considered. We propose a sufficient conceptual model based on a binary variant of the ER model and show its relationship to a graph database model, i.e. a mapping conceptual schemas to database schemas. An alternative based on the conceptual functions called attributes is presented.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Article Open Access (1390 views since : Dec 31, 2019)
Ravi Teja Velpula , Barsha Jain , Ha Quoc Thang Bui , Hieu Pham Trung Nguyen
Page(s): 551-588 in Vol 3, Iss 4 (2019)
Time cited: 5

III-nitride nanowire-based light-emitting diodes (LEDs) have been intensively studied as promising candidates for future lighting technologies. Compared to conventional GaN-based planar LEDs, III-nitride nanowire LEDs exhibit numerous advantages including greatly reduced dislocation densities, polarization fields, and quantum-conned Stark effect due to the effective lateral stress relaxation, promising high-efficiency full-color LEDs. Beside these advantages, however, several issues have been identified as the limiting factors for further enhancing the nanowire LED quantum efficiency and light output power. Some of the most probable causes have been identified as due to the lack of carrier confinement in the active region, non-uniform carrier distribution, electron overflow, and the nonradiative recombination along the nanowire lateral surfaces. Moreover, the presence of large surface states and defects contribute significantly to the carrier loss in nanowire LEDs. Consequently, reported nanowire LEDs show relatively low output power. Recently, III-nitride core-shell nanowire LED structures have been reported as the most efficient nanowire white LEDs with a record-high output power which is more than 500 times stronger than that of nanowire white LEDs without using core-shell structure. In this context, we will review the current status, challenges, and approaches for the high-performance IIInitride nanowire LEDs. More specifically, we will describe the current methods for the fabrication of nanowire structures including top-down and bottom-up approaches, followed by characteristics of III-nitride nanowire LEDs. We will then discuss the carrier dynamics and loss mechanism in nanowire LEDs. The typical designs for the enhanced performance of III-nitride nanowire LEDs will be presented next. The color-tunable nanowire LEDs with emission wavelengths in the visible spectrum and phosphor-free nanowire white LEDs will be finally discussed.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Article Open Access (1288 views since : Dec 31, 2019)
Faiza Zaamoune , Tidjani Menacer , René Lozi , Guanrong Chen
Page(s): 511-522 in Vol 3, Iss 4 (2019)
Time cited: 3

In this paper, hidden bifurcation routes to multiscroll chaotic attractors generated by saturated function series are explored. The method to nd such hidden bifurcation routes (HBR) depending upon two parameters is similar to the method introduced by Menacer, et al. (2016) for Chua multiscroll attractors. These HBR are characterized by the maximal range extension (MARE) of their attractors and coding the appearance order of the scrolls under the control of the two parameters. Moreover, these HDR have interesting symmetries with respect to the two parameters. The novelty that this article introduces, is firstly the paradigm of MARE and the formula giving their approximate value depending upon parameters p and q, which is linked to the size of the scrolls; secondly the coding of the HBR which is dened for the first time including the basic cell; and thirdly unearthing the symmetries of these routes, allowing to obtain their coding without any numerical computation.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Article Open Access (1274 views since : Nov 30, 2017)
Thi Phuong Thao Nguyen , Doan Quoc Anh Nguyen , Miroslav Voznak , Van Tho Le
Page(s): 87-94 in Vol 1, Iss 2 (2017)
Time cited: 3

Enhancement of the color uniformity, the lumen output of the multi-chip white LED lamps (MCW-LEDs) at high color correlated temperature is a big challenge for researchers. However, an innovative LED lamp designed with a phosphor compounding, which combines (La,Ce,Tb) PO4:Ce:Tb (LaTb) green phosphor with YAG: CE yellow phosphor, is proposed as an optimal solution to this requirement. Index, using LaTb green phosphor into MCWLEDs could bring a superior optical performance for MCW-LEDs. It is found that the lumen output of this new MCW-LED at a high color temperature of 8500 K significantly improves up to 1600 lm compared to MCW-LEDs without LaTb phosphor. The simulation results demonstrated that the CCT deviation sharply decreases from 9000 to 1000 at the LaTb concentration range from 0 to 1.8 %, while the Color Rendering Index ability (CRI) and the Color Quality Scale (CQS) slightly decrease. To obtain the highest lumen output and the best color uniformity, the particle size range within 6 - 8 µm should be suggested.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.