Journal of Advanced Engineering and Computation

Issued quarterly (4 issues per year)

JAEC Annual Best Cited Paper Award


Announcement: 2019 JAEC Best Cited Paper Award

Journal of Advanced Engineering and Computation (JAEC) has announced JAEC Annual Best Cited Paper Award for research and review articles of the JAEC. The purpose of this award is to recognize the best-cited paper published in the past three (03) years that attracts the most citations. The quantity and quality of citations of papers are based on data from ISI and/or Scopus and/or Google Scholar that tracks the paper since its first publication.

From 2017 to 2019, JAEC has published 64 research/review papers in 3 volumes and 10 issues. Top five papers with high quantity and quality of citations have been evaluated by the Award Selection Committee.

Now, it is our pleasure to announce that Winner of 2019 Best Cited Paper Award is the paper entitled "Computational cardiovascular flow analysis with the variational multiscale methods" which is published in Volume 3, issue 2, pp. 366-405, 2019 by the authors K Takizawa*, Y Bazilevs, TE Tezduyar, MC Hsu.

Congratulation on the 2019 Award Winner.

The 2020 Award will be announced in early April 2021

Award Certificate

Click here to download JAEC flyer and share to friends More...

AIMS & SCOPE
Journal of Advanced Engineering and Computation (JAEC) is a forum for the presentation of innovative ideas, approaches, developments, and research projects in the area of advanced engineering and computation. It serves to facilitate the exchange of information between researchers and industry professionals. Multi-disciplinary topics that connect the core areas of advanced engineering and computation and its applications are also covered in this journal.

It also aims to promote and coordinate developments in the field of advanced engineering and computation. The international dimension is emphasized in order to foster international collaboration in advanced engineering and computation to meet the needs of broadening the applicability and scope of the current body of knowledge.

READERSHIP
The journal provides a vehicle to help professionals, academics, researchers and policy makers working in fields relevant to advanced engineering and computation to disseminate information and to learn from each other's work.

CONTENTS
JAEC publishes original research papers, review papers, case reports, technical notes and short communications. 

OPEN ACCESS
JAEC is a fully open access, single-blind peer reviewed, electronic and print, and a quarter-annual publication. Currently, Ton Duc Thang University is pleased to cover all publishing fees for the journal; as a result, authors do not have to pay any fees although their published papers are open to the reader.

TERM AND CONDITIONS 
JAEC publishes Open Access articles under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium provided the original work is properly cited.

Call for Papers
Research Article Open Access
Hrittik Raj Barua , Imtiaz Akber Chowdhury
Page(s): in Vol 8, Iss 1 (2024)
Time cited: 0

This paper presents the design and simulation of an efficient multiple input multiple output (MIMO) antenna array for 5G millimeter-wave (mm-wave) mobile applications. With a dielectric constant of 2.2 and a loss tangent of 0.0009, the substrate employed is a Rogers RT5880 that is 0.254 mm thick. The 37 GHz frequency spectrum, reserved for millimeter-wave mobile applications for 5G, is covered by the proposed MIMO antenna arrays. The single antenna element has a gain of 6.44 dBi, which is increased to 7.89 dBi with a two-element array configuration and 10.88 dBi with a four-element array configuration. The proposed MIMO antenna array performance metrics—including reflection coefficient, VSWR, radiation efficiency, and gain—are seen and discovered to be below the accepted threshold. In the desired operating frequency band, it is noticed that more than 85% of the proposed MIMO antenna array's radiation efficiency is achieved. According to simulation findings, the proposed design may be potentially feasible for mobile applications using millimeter waves in the 5G network.

Research Article Open Access
Vu Uyen Phuong Nguyen , Hanh Hoang Minh , Trung Thang Nguyen
Page(s): in Vol 8, Iss 1 (2024)
Time cited: 0

This study presents the application of a new meta-heuristic algorithm called One-to-One optimization algorithm (OOBO) for solving the renewable-integrated economic load dispatch problem (RI-ELD) with consideration of both wind and solar power plants. The whole study focuses on minimizing the overall expenses of fuel (OEF) for all thermal electric power plants (TEPPs). The considered power system consists of twenty TEPPs with different working limits. OOBO is applied to solve the given problem in three cases of load demand level, including 2500, 2600, and 2700 MW. The results achieved by OOBO in the three cases are compared with other meta-heuristic algorithms called Coati optimization algorithm (COA) in the four aspects, such as Best OEF (Bst.OEF), Average OEF (Aver.OEF), Maximum OEF (Max.OEF). OOBO not only outperforms COA in all comparison aspects but also provides faster convergence speed to the optimal values of OEF at all three cases of load demand. Moreover, OOBO shows its surprising stability over COA regardless of the increase of load demand in Case 2 and Case 3. By observing these results, OOBO deserved the highly effective search tool for solving the large-scale and highly complex RI-ELD problem. 

Research Article Open Access
Ly Huu Pham , Tai Thanh Phan , Van Thanh Ngoc Nguyen , Khoa Dang Tran Phan , Phung Hai Nguyen
Page(s): in Vol 8, Iss 1 (2024)
Time cited: 0

This article studies the influence of distributed generation (DG), specifically the influence of photovoltaic (PV) in the distribution system. The particle swarm optimization algorithm (PSO) will be applied to determine the best capacity and location of PV on a test system of EEE 33 nodes so that active power loss is minimized, and the voltage profile is improved. The performance of the applied method is evaluated by comparing its results to those from some previous methods, including the Genetic Algorithm (GA), the Bacterial Foraging Optimization Algorithm (BFOA), and the Backtracking Search Optimization Algorithm (BSOA). As a result, it proved that the proposed method is better than others in terms of processing time, voltage profile, and minimization system capacity loss. In addition, the main contribution of the study is to give detailed solutions for operators in installing how many PVs in the power system can satisfy economic and technical aspects.

 

Research Article Open Access
Tri-Vien Vu , Anh-Minh Duc Tran
Page(s): in Vol 8, Iss 1 (2024)
Time cited: 0

In this study, we present a systematically designed Sliding Mode Speed Controller (SMSC) tailored for motors utilized in a Differential Drive Wheel Mobile Robot (DDWMR). Our analysis delves into the critical parameters of the SMSC, including convergence and reaching rates, alongside simulation configurations such as time step. We concurrently consider metrics like rising time, steady-state error, and control ripple factors to optimize performance. Through comprehensive evaluation across various case studies, we demonstrate the efficacy of the fine-tuned SMSC in enhancing the overall performance of the DDWMR. Our simulation results underscore the significance of meticulous parameter tuning, particularly emphasizing the role of time step settings. We find that a smaller time step mitigates chattering phenomena and improves performance, albeit at the cost of increased computational demands and potentially heightened hardware requirements.


Research Article Open Access
Mayaka N. Moses , Michael J. Saulo
Page(s): in Vol 8, Iss 1 (2024)
Time cited: 0

The concept of mcirogrids has gained popularity in the distribution of electricity to the final consumer. Microgrids integrating energy storage devices, combined heat and power system (CHP) and renewable energy generation are especially becoming attractive to industrial consumers –such as industrial parks – due to environmental and economic benefits. However, the intermittence of renewable energy sources imply that storage is essential for economic operation. However, technological limitations of storage solutions for the grid imply that we need to consider supplying the power into the main grid. However, grids are designed for unidirectional operation, which implies that mcirogrids cannot receive and send power to the grid. This research paper, shows the potential for SSTs to support power-sharing among islanded microgrids. The microgrids are interconnected through the low-voltage medium, which implies that they can send and receive power from the main grid. Simulations through MATLAB demonstrate that the SST can support the integration of renewable energy sources at the low-voltage DC bus. Furthermore, advanced controls – particularly, particle swarm optimization – can be implemented to mitigate harmonics (only 1.17% in the presence of non-linear loads and 0.36% in the presence of resistive loads alone) and voltage imbalance (the voltage unbalance factor is less than 1%) at the microgrid level. Microgrids generating excess power can also share with neighboring microgrids in the absence of the main grid (for instance, during a fault). This research is instrumental in reconfiguring conventional grids to meet the needs of modern power system requirements.

Research Article Open Access
Sang Dang Ho , Nguyen Thi Phuong Loan , Hsiao Yi Lee , Nguyen Doan Quoc Anh
Page(s): in Vol 8, Iss 1 (2024)
Time cited: 0

The distinctive wide-band blue illumination absorption and red strait-line discharge of the phosphor K2SiF6:Mn4+ (KMnSF) make it an attractive material for manufacturing warm white light-emitting diodes (WLED). Nevertheless, using the highly corrosive raw ingredient HF to produce commercial KMnSF red phosphor has negative effects on the environment and people. In this study, microfluidic technology was used to successfully manufacture the KMnSF without the need for HF compound while resulting in a phosphor product with homogenous granule shape and size. The luminescence capabilities of the KMnSF samples were then thoroughly examined and characterized. Eventually, we made WLED packages comprising of blue LED chips, yellow phosphor Y3Al5O12:Ce3+ (YGA:Ce), red phosphor KMnSF, and SiO2 scattering particle. Via varying the SiO2 concentration during the simulation process, the prepared WLED’s optical performances are obtained. The scattering properties of the phosphor layer as well as the lighting transmission and distribution were simulated with the utilization of both LightTools software and Monte Carlo theory. According to the outcomes, the microfluidic-synthesized K2SiF6:Mn4+ proves to be appropriate for WLED apparatuses. Besides, the proposed phosphor compound with SiO2 scattering particles showed the improvement in luminous flux and angular uniformity of the WLED.

Research Article Open Access (4853 views since : Nov 30, 2017)
Filip Zatloukal , Jiri Znoj
Page(s): 153-161 in Vol 1, Iss 2 (2017)
Time cited: 18

This paper follows our previous research in which we made a basic experiment to find out if it is possible to detect malware by multiple PE header detection. The previous results show us that there is a considerable amount of malwares that connect themselves to another file. This paper summarizes our previous results, updates the results and also expands them by adding an optimization method and also by including the scan of another (specific) types of data.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Article Open Access (2088 views since : Sep 30, 2019)
Du Dinh-Cong , Linh Vo-Van , Dung Nguyen-Quoc , Trung Nguyen-Thoi
Page(s): 452-463 in Vol 3, Iss 3 (2019)
Time cited: 9

Modal kinetic energy (MKE) feature has been mostly employed for optimal sensor layout strategies; nevertheless, little attention is paid to use the feature to the field of structural damage detection. The article presents the extensive applicability of MKE change ratio (MKECR), a good damage sensitive parameter, to damage localization and quantification of laminated composite beams. The formulation of the parameter is based on the closed-form of element MKE sensitivity. The performance of the offered damage detection method is numerically verified by a clamped-clamped composite beam and a two-span continuous composite beam with different hypothetical damage scenarios. The influence of incomplete mode shapes, various noise levels as well as damage magnitudes on damage prediction results are also investigated. The obtained results from these numerical examples indicate that the offered method reliably localize the actually damaged elements and approximately estimate their severities, even under incomplete measurements at a high noise level.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

 

Research Article Open Access (1993 views since : Nov 30, 2017)
Thao Nguyen-Trang , Long Vu-Hoang , Trieu Nguyen-Thi , Ha Che-Ngoc
Page(s): 123-133 in Vol 1, Iss 2 (2017)
Time cited: 0

Tax consulting service is one of various professional consulting services and is interested to study by many researchers. Nevertheless, this issue has not been interested to research in Vietnam. This paper performs confirmatory factors analysis (CFA) and structural equation modeling (SEM) to identify the factors influencing the intentions of using tax consulting services of firms in Ho Chi Minh city, Vietnam. Specifically, this paper finds that the intentions depend on the “attitude toward the behavior” and “replacement”. In addition, through Chi-square test, it can be proven that the intentions also depend on type of firms and whether they have ever used tax consulting service or not. Based on the obtained results, the discussion and recommendation are also proposed.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Article Open Access (1839 views since : Jun 8, 2017)
Jaroslav Pokorny
Page(s): 04-17 in Vol 1, Iss 1 (2017)
Time cited: 7

Comparing graph databases with traditional,e.g., relational databases, some important database features are often missing there. Particularly, a graph database schema including integrity constraints is mostly not explicitly defined, also a conceptual modelling is not used. It is hard to check a consistency of the graph database, because almost no integrity constraints are defined or only their very simple representatives can be specified. In the paper, we discuss these issues and present current possibilities and challenges in graph database modelling. We focus also on integrity constraints modelling and propose functional dependencies between entity types, which reminds modelling functional dependencies known from relational databases. We show a number of examples of often cited GDBMSs and their approach to database schemas and ICs specification. Also a conceptual level of a graph database design is considered. We propose a sufficient conceptual model based on a binary variant of the ER model and show its relationship to a graph database model, i.e. a mapping conceptual schemas to database schemas. An alternative based on the conceptual functions called attributes is presented.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Article Open Access (1807 views since : Dec 31, 2019)
Ravi Teja Velpula , Barsha Jain , Ha Quoc Thang Bui , Hieu Pham Trung Nguyen
Page(s): 551-588 in Vol 3, Iss 4 (2019)
Time cited: 9

III-nitride nanowire-based light-emitting diodes (LEDs) have been intensively studied as promising candidates for future lighting technologies. Compared to conventional GaN-based planar LEDs, III-nitride nanowire LEDs exhibit numerous advantages including greatly reduced dislocation densities, polarization fields, and quantum-conned Stark effect due to the effective lateral stress relaxation, promising high-efficiency full-color LEDs. Beside these advantages, however, several issues have been identified as the limiting factors for further enhancing the nanowire LED quantum efficiency and light output power. Some of the most probable causes have been identified as due to the lack of carrier confinement in the active region, non-uniform carrier distribution, electron overflow, and the nonradiative recombination along the nanowire lateral surfaces. Moreover, the presence of large surface states and defects contribute significantly to the carrier loss in nanowire LEDs. Consequently, reported nanowire LEDs show relatively low output power. Recently, III-nitride core-shell nanowire LED structures have been reported as the most efficient nanowire white LEDs with a record-high output power which is more than 500 times stronger than that of nanowire white LEDs without using core-shell structure. In this context, we will review the current status, challenges, and approaches for the high-performance IIInitride nanowire LEDs. More specifically, we will describe the current methods for the fabrication of nanowire structures including top-down and bottom-up approaches, followed by characteristics of III-nitride nanowire LEDs. We will then discuss the carrier dynamics and loss mechanism in nanowire LEDs. The typical designs for the enhanced performance of III-nitride nanowire LEDs will be presented next. The color-tunable nanowire LEDs with emission wavelengths in the visible spectrum and phosphor-free nanowire white LEDs will be finally discussed.


Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Research Article Open Access (1708 views since : Dec 31, 2019)
Faiza Zaamoune , Tidjani Menacer , René Lozi , Guanrong Chen
Page(s): 511-522 in Vol 3, Iss 4 (2019)
Time cited: 8

In this paper, hidden bifurcation routes to multiscroll chaotic attractors generated by saturated function series are explored. The method to nd such hidden bifurcation routes (HBR) depending upon two parameters is similar to the method introduced by Menacer, et al. (2016) for Chua multiscroll attractors. These HBR are characterized by the maximal range extension (MARE) of their attractors and coding the appearance order of the scrolls under the control of the two parameters. Moreover, these HDR have interesting symmetries with respect to the two parameters. The novelty that this article introduces, is firstly the paradigm of MARE and the formula giving their approximate value depending upon parameters p and q, which is linked to the size of the scrolls; secondly the coding of the HBR which is dened for the first time including the basic cell; and thirdly unearthing the symmetries of these routes, allowing to obtain their coding without any numerical computation.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.