Thermal and Fluid Flow Analysis of Shell-and-Tube Heat Exchangers with Smooth and Dimpled Tubes
Abstract
This current work mainly focuses on the enhancement of the heat transfer and fluid flow characteristics of shell-and-tube heat exchangers by incorporating dimples on the smooth or conventional tubes. With the aid of the ANSYS (Fluent) commercial software package, Computational Fluid Dynamics (CFD) simulations under a steady-state condition were conducted on heat exchanger having a single shell and 12 tubes (with or without dimples), 50% baffle cut, 100mm baffle spacing and turbulent flow. The temperature, velocity, and pressure fields at the shell and tube zone in both cases are analyzed. The computational fluid dynamics results of the heat exchanger with dimpled tubes are compared with conventional (smooth) tubes. However, the results show that a shell and tube heat exchanger with dimpled tubes has a higher overall heat transfer coefficient than that of conventional (smooth) tubes.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.
Keywords
Full Text:
PDFTime cited: 4
DOI: http://dx.doi.org/10.55579/jaec.202263.378
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Journal of Advanced Engineering and Computation
This work is licensed under a Creative Commons Attribution 4.0 International License.